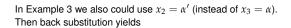


Equivalent Representation of Solutions



$$L' = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -\frac{215}{3} \\ 0 \\ -\frac{25}{3} \\ -6 \end{pmatrix} + \alpha' \begin{pmatrix} -\frac{17}{3} \\ 1 \\ \frac{1}{3} \\ 0 \end{pmatrix} \right| \ \alpha \in \mathbb{R} \right\}$$

However, these two solution sets are equal, L' = L!

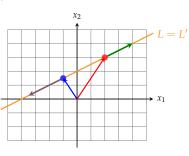
We thus have two different – $but \ equivalent$ – representations of the same set.

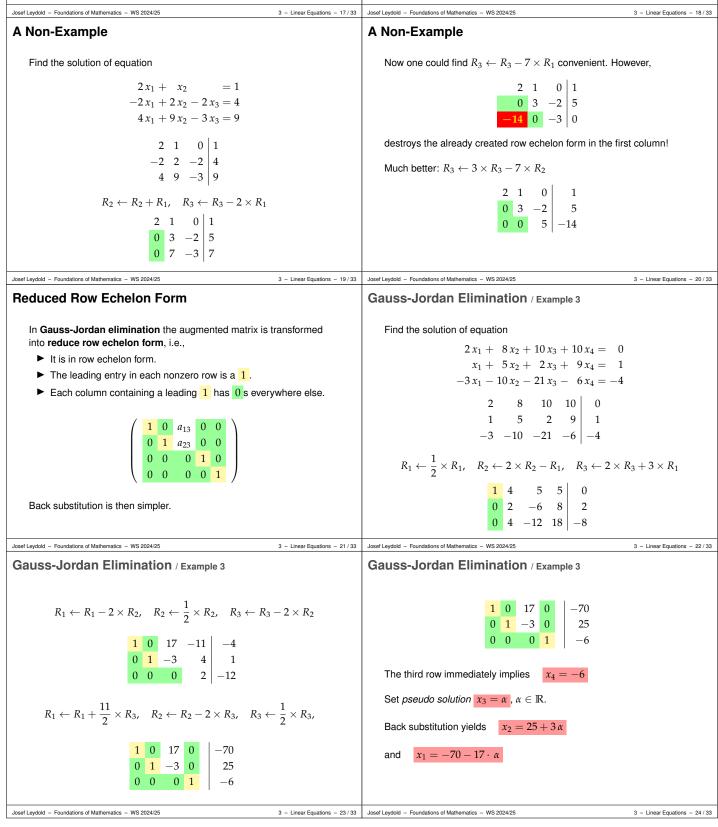
The solution set is unique, its representation is not!

Equivalent Representation of Solutions

The set of solution points in Example 3 can be interpreted as a *line* in a (4-dimensional) space.

The representations in L and L' are thus parametric curves in \mathbb{R}^4 with the same image.





Gauss-Jordan Elimination / Example 3	Gauss-Jordan Elimination / Example 3
Thus the solution set of this equation is	Compare
$L = \left\{ \mathbf{x} = \begin{pmatrix} -70\\25\\0\\-6 \end{pmatrix} + \alpha \begin{pmatrix} -17\\3\\1\\0 \end{pmatrix} \right \alpha \in \mathbb{R} \right\}$	$\begin{vmatrix} 1 & 0 & 17 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} -70 \\ 25 \\ -6 \end{vmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} -70 \\ 25 \\ 0 \\ -6 \end{pmatrix} + \alpha \begin{pmatrix} -17 \\ 3 \\ 1 \\ 0 \end{pmatrix}$
	The positional vector $(-70, 25, 0, -6)^T$ follows from the r.h.s. of the reduced row echelon while the direction vector $(-17, 3, 1, 0)^T$ is given by the column without leading $\frac{1}{2}$.
Josef Leydold - Foundations of Mathematics - WS 2024/25 3 - Linear Equations - 25/3	3 Josef Leydold - Foundations of Mathematics - WS 2024/25 3 - Linear Equations - 26 / 33
Inverse of a Matrix	Example 1
Computation of the inverse \mathbf{A}^{-1} of matrix \mathbf{A} by <i>Gauss-Jordan elimination</i> :	Compute the inverse of
 Augment matrix A by the corresponding <i>identity matrix</i> to the right. 	$\mathbf{A} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ -3 & -2 & -5 \end{pmatrix}$
(2) Transform the augmented matrix such that the identity matrix	(1) Augment matrix A:
appears on the left hand side by means of the transformation steps of Gaussian elimination.	
(3) Either the procedure is successful. Then we obtain the <i>inverse matrix</i> A^{-1} on the right hand side.	$\left(\begin{array}{cccccc} 3 & 2 & 6 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ -3 & -2 & -5 & 0 & 0 & 1 \end{array}\right)$
(4) Or the procedure aborts (because we obtain a row of zeros on the l.h.s.). Then the matrix is <i>singular</i>.	
Josef Leydold - Foundations of Mathematics - WS 2024/25 3 - Linear Equations - 27/3	3 Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 28/33
Example 1	Example 1
(2) Transform:	
$R_1 \leftarrow \frac{1}{3} \times R_1, R_2 \leftarrow 3 \times R_2 - R_1, R_3 \leftarrow R_3 + R_1$	$R_2 \leftarrow R_2 - 3 \times R_3$
$\left(\begin{array}{ccc c} 1 & \frac{2}{3} & 2 & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 3 & -1 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$R_1 \leftarrow R_1 - \frac{2}{3} \times R_2$	(3) Matrix \mathbf{A} is invertible with inverse
$\left(\begin{array}{cccccccc} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 3 & -1 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right)$	$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -2 & 0 \\ -4 & 3 & -3 \\ 1 & 0 & 1 \end{pmatrix}$
Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 29/3 Example 2	3 Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 30/3 Example 2
Compute the inverse of	(2) Transform:
	$R_1 \leftarrow \frac{1}{3} \times R_1, R_2 \leftarrow 3 \times R_2 - 2 \times R_1, R_3 \leftarrow 3 \times R_3 - 5 \times R_1$
$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix}$	$\begin{pmatrix} 1 & \frac{1}{3} & 1 & \frac{1}{3} & 0 & 0 \\ 0 & 10 & -3 & -2 & 3 & 0 \\ 0 & 10 & -3 & -5 & 0 & 5 \end{pmatrix}$
(1) Augment matrix A:	$\begin{vmatrix} 0 & 10 & -3 \end{vmatrix} -5 & 0 & 5 \end{pmatrix}$
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$R_{1} \leftarrow R_{1} - \frac{1}{30} \times R_{2}, R_{2} \leftarrow \frac{1}{10} \times R_{2}, R_{3} \leftarrow R_{3} - R_{2}$ $\begin{pmatrix} 1 & 0 & \frac{11}{10} & \frac{4}{10} & -\frac{1}{10} & 0\\ 0 & 1 & -\frac{3}{10} & -\frac{2}{10} & \frac{3}{10} & 0\\ 0 & 0 & 0 & -3 & -3 & 5 \end{pmatrix}$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 31 / 3	3 Josef Leydold – Foundations of Mathematics – WS 2024/25 3 – Linear Equations – 32/3

Summary

- system of linear equations
- Gaussian elimination

Josef Leydold - Foundations of Mathematics - WS 2024/25

- Gauss-Jordan elimination
- computation of inverse matrix

3 - Linear Equations - 33 / 33