

Leontief Model

Input-output model with

 $\mathbf{A} \dots$ technology matrix $\mathbf{x} \dots$ production vector $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$

b ... demand vector

For a given output \mathbf{b} we get the corresponding input \mathbf{x} by

$$\begin{aligned} \mathbf{x} &= \mathbf{A}\mathbf{x} + \mathbf{b} & | & -\mathbf{A}\mathbf{x} \\ \mathbf{x} - \mathbf{A}\mathbf{x} &= \mathbf{b} \\ (\mathbf{I} - \mathbf{A})\mathbf{x} &= \mathbf{b} & | & (\mathbf{I} - \mathbf{A})^{-1} \cdot \end{aligned}$$

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$$

Josef Leydold – Foundations of Mathematics – WS 2024/25

3 - Linear Equations - 4 / 33

Solutions of a System of Linear Equations

Three possibilities:

- ► The system of equations has *exactly one* solution.
- ► The system of equations is *inconsistent*(not solvable).
- ▶ The system of equations has infinitely many solutions.

In Gaussian elimination the augmented coefficient matrix (\mathbf{A},b) is transformed into row echelon form.

Then the solution set is obtained by **back substitution**.

It is not possible to determine the number of solutions from the numbers of equations and unknowns. We have to transform the system first.

Josef Leydold - Foundations of Mathematics - WS 2024/25

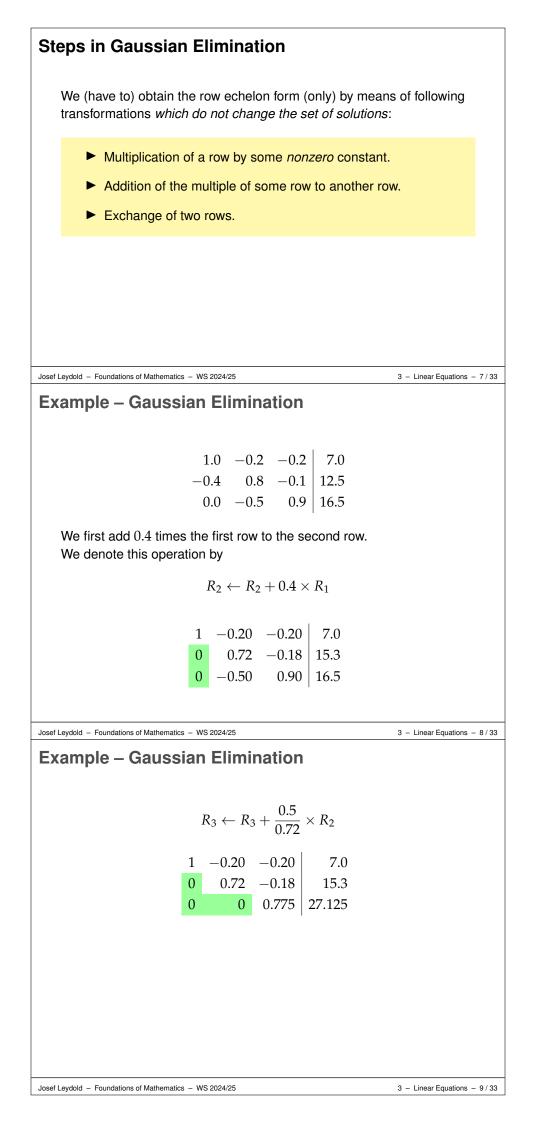
3 - Linear Equations - 5/33

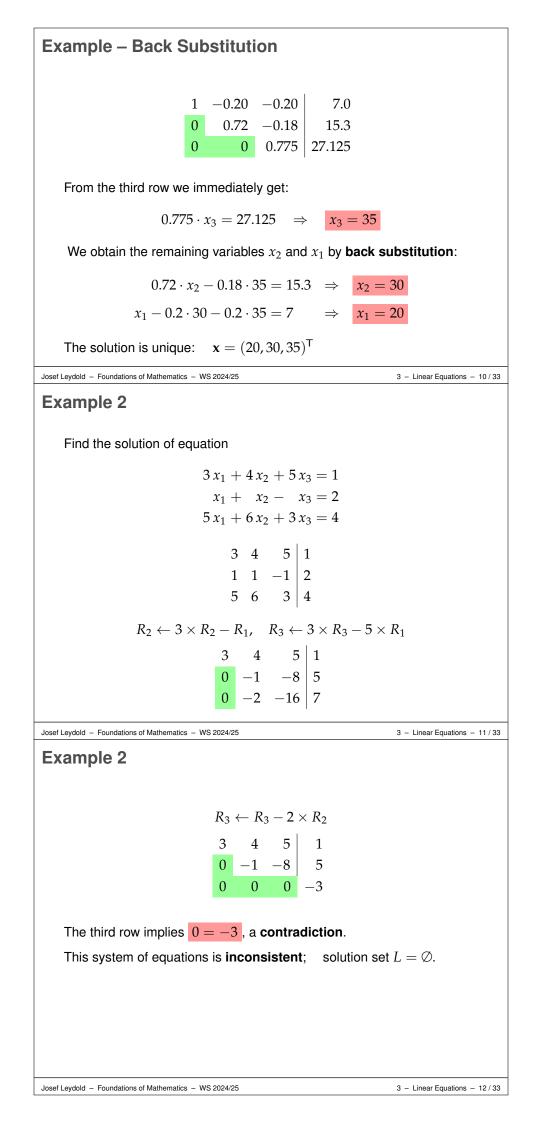
Row Echelon Form

In **row echelon form** the number of *leading zeros* strictly increases from one row to the row below.

(1	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	
	0	1	<i>a</i> ₂₃	<i>a</i> ₂₄	a ₂₅	
	0	0	0	1	<i>a</i> ₃₅	
	0	0	0	0	1)

For our purposes it is not required that the first nonzero entries are equal to $\frac{1}{1}$.





Find the solution of equation

 $2x_{1} + 8x_{2} + 10x_{3} + 10x_{4} = 0$ $x_{1} + 5x_{2} + 2x_{3} + 9x_{4} = 1$ $-3x_{1} - 10x_{2} - 21x_{3} - 6x_{4} = -4$ $2 \quad 8 \quad 10 \quad 10 \quad 0$ $1 \quad 5 \quad 2 \quad 9 \quad 1$ $-3 \quad -10 \quad -21 \quad -6 \quad -4$ $R_{2} \leftarrow 2 \times R_{2} - R_{1}, \quad R_{3} \leftarrow 2 \times R_{3} + 3 \times R_{1}$ $2 \quad 8 \quad 10 \quad 10 \quad 0$ $0 \quad 2 \quad -6 \quad 8 \quad 2$ $0 \quad 4 \quad -12 \quad 18 \quad -8$

Josef Leydold - Foundations of Mathematics - WS 2024/25

Example 3

F	R ₃ +	$-R_3$	- 2 >	$\times R_2$
2	8	10 -6	10	0
0	2	-6	8	2
0	0	0	2	-12

This equation has **infinitely many** solutions. This can be seen from the *row echelon form* as there are *more* variables than nonzero rows.

Josef Leydold - Foundations of Mathematics - WS 2024/25

Example 3

The third row immediately implies

 $2 \cdot x_4 = -12 \quad \Rightarrow \quad x_4 = -6$

Back substitution yields

 $2 \cdot x_2 - 6 \cdot x_3 + 8 \cdot (-6) = 2$

In this case we use *pseudo solution* $x_3 = \alpha$, $\alpha \in \mathbb{R}$, and get

In this case we use pseudo solution	13 — U	, $u \in \mathbb{R}$, and get
$x_2 - 3 \cdot \alpha + 4 \cdot (-6) = 1$	\Rightarrow	$x_2 = 25 + 3 \alpha$
$2 \cdot x_1 + 8 \cdot (25 + 3 \cdot \alpha) + 10 \cdot \alpha + 10$	\cdot (-6)	= 0
		\Rightarrow $x_1 = -70 - 17 \cdot \alpha$

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 15/33

3 - Linear Equations - 13 / 33

3 - Linear Equations - 14 / 33

We obtain a solution for each value of α . Using vector notation we obtain

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -70 - 17 \cdot \alpha \\ 25 + 3 \alpha \\ \alpha \\ -6 \end{pmatrix} = \begin{pmatrix} -70 \\ 25 \\ 0 \\ -6 \end{pmatrix} + \alpha \begin{pmatrix} -17 \\ 3 \\ 1 \\ 0 \end{pmatrix}$$

Thus the solution set of this equation is

$$L = \left\{ \mathbf{x} = \begin{pmatrix} -70\\25\\0\\-6 \end{pmatrix} + \alpha \begin{pmatrix} -17\\3\\1\\0 \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 16 / 33

Equivalent Representation of Solutions

In Example 3 we also could use $x_2 = \alpha'$ (instead of $x_3 = \alpha$). Then back substitution yields

$$L' = \left\{ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -\frac{215}{3} \\ 0 \\ -\frac{25}{3} \\ -6 \end{pmatrix} + \alpha' \begin{pmatrix} -\frac{17}{3} \\ 1 \\ \frac{1}{3} \\ 0 \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}$$

However, these two solution sets are equal, L' = L!

We thus have two different – *but equivalent* – representations of the same set.

The solution set is unique, its representation is not!

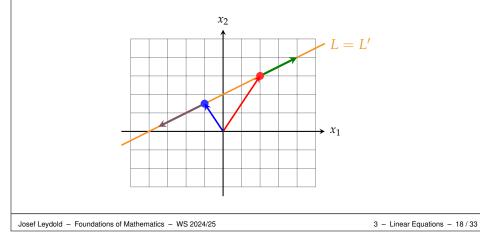
Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 17/33

Equivalent Representation of Solutions

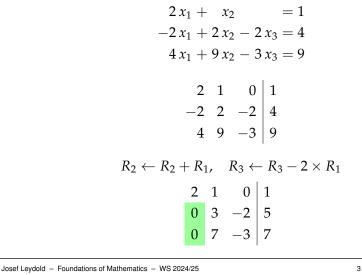
The set of solution points in Example 3 can be interpreted as a *line* in a (4-dimensional) space.

The representations in L and L' are thus parametric curves in \mathbb{R}^4 with the same image.



A Non-Example

Find the solution of equation



3 - Linear Equations - 19 / 33

A Non-Example

Now one could find $R_3 \leftarrow R_3 - 7 \times R_1$ convenient. However,

2	1	0	1
0	3	-2	5
-14	0	-3	0

destroys the already created row echelon form in the first column!

Much better: $R_3 \leftarrow 3 \times R_3 - 7 \times R_2$

2	1	0	1
0	3	-2	5
0	0	5	-14

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 20 / 33

Reduced Row Echelon Form

In **Gauss-Jordan elimination** the augmented matrix is transformed into **reduce row echelon form**, i.e.,

- ► It is in row echelon form.
- \blacktriangleright The leading entry in each nonzero row is a $\frac{1}{1}$.
- Each column containing a leading 1 has 0 s everywhere else.

(1	0	<i>a</i> ₁₃	0	0	
	0	1	a ₂₃	0	0	
	0	0	0	1	0	
	0	0	0	0	1)

Back substitution is then simpler.

Gauss-Jordan Elimination / Example 3

Find the solution of equation

 $2x_{1} + 8x_{2} + 10x_{3} + 10x_{4} = 0$ $x_{1} + 5x_{2} + 2x_{3} + 9x_{4} = 1$ $-3x_{1} - 10x_{2} - 21x_{3} - 6x_{4} = -4$ $2 \quad 8 \quad 10 \quad 10 \quad 0$ $1 \quad 5 \quad 2 \quad 9 \quad 1$ $-3 \quad -10 \quad -21 \quad -6 \quad -4$ $R_{1} \leftarrow \frac{1}{2} \times R_{1}, \quad R_{2} \leftarrow 2 \times R_{2} - R_{1}, \quad R_{3} \leftarrow 2 \times R_{3} + 3 \times R_{1}$ $\frac{1}{2} \quad 4 \quad 5 \quad 5 \quad 0$ $0 \quad 2 \quad -6 \quad 8 \quad 2$ $0 \quad 4 \quad -12 \quad 18 \quad -8$

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 22 / 33

Gauss-Jordan Elimination / Example 3

$$R_1 \leftarrow R_1 + \frac{11}{2} \times R_3, \quad R_2 \leftarrow R_2 - 2 \times R_3, \quad R_3 \leftarrow \frac{1}{2} \times R_3,$$

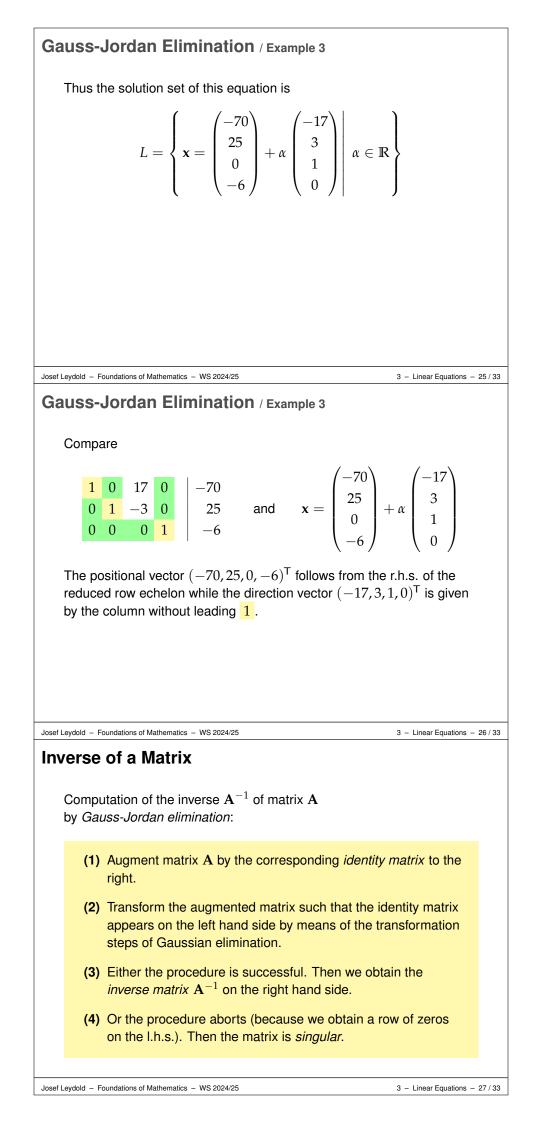
1 0 17 0 | -70

T	0	17	0	-70
0	1	-3	0	25
0	0	0	1	-6

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 23 / 33

Gauss-Jordan Elimination / Example 3 $\begin{array}{c|cccc}
1 & 0 & 17 & 0 & -70 \\
0 & 1 & -3 & 0 & 25 \\
0 & 0 & 0 & 1 & -6
\end{array}$ The third row immediately implies $x_4 = -6$ Set *pseudo solution* $x_3 = \alpha$, $\alpha \in \mathbb{R}$. Back substitution yields $x_2 = 25 + 3 \alpha$ and $x_1 = -70 - 17 \cdot \alpha$



Compute the inverse of

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 3 \\ -3 & -2 & -5 \end{pmatrix}$$

(1) Augment matrix A:

Josef Leydold - Foundations of Mathematics - WS 2024/25

Example 1

(2) Transform:

$$R_{1} \leftarrow \frac{1}{3} \times R_{1}, \quad R_{2} \leftarrow 3 \times R_{2} - R_{1}, \quad R_{3} \leftarrow R_{3} + R_{1}$$

$$\begin{pmatrix} 1 & \frac{2}{3} & 2 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 3 & | & -1 & 3 & 0 \\ 0 & 0 & 1 & | & 1 & 0 & 1 \end{pmatrix}$$

$$R_{1} \leftarrow R_{1} - \frac{2}{3} \times R_{2}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & -2 & 0 \\ 0 & 1 & 3 & | & -1 & 3 & 0 \\ 0 & 0 & 1 & | & 1 & 0 & 1 \end{pmatrix}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

3 - Linear Equations - 29 / 33

3 - Linear Equations - 28 / 33

Example 1

 $R_2 \leftarrow R_2 - 3 \times R_3$

(1	0	0	1	-2	0)
	0	1	0	-4	3	-3
$\left(\right)$	0	0	1	1	0	$\begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix}$

(3) Matrix ${f A}$ is invertible with inverse

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -2 & 0 \\ -4 & 3 & -3 \\ 1 & 0 & 1 \end{pmatrix}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

Compute the inverse of

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 2 & 4 & 1 \\ 5 & 5 & 4 \end{pmatrix}$$

(1) Augment matrix A:

(3	1	3	1	0	0)
						0
	5	5	4	0	0	1 /

Example 2

Josef Leydold - Foundations of Mathematics - WS 2024/25

(2) Transform:

 $\begin{aligned} R_{1} \leftarrow \frac{1}{3} \times R_{1}, \quad R_{2} \leftarrow 3 \times R_{2} - 2 \times R_{1}, \quad R_{3} \leftarrow 3 \times R_{3} - 5 \times R_{1} \\ \begin{pmatrix} 1 & \frac{1}{3} & 1 & | & \frac{1}{3} & 0 & 0 \\ 0 & 10 & -3 & | & -2 & 3 & 0 \\ 0 & 10 & -3 & | & -5 & 0 & 5 \\ \end{pmatrix} \\ R_{1} \leftarrow R_{1} - \frac{1}{30} \times R_{2}, \quad R_{2} \leftarrow \frac{1}{10} \times R_{2}, \quad R_{3} \leftarrow R_{3} - R_{2} \\ \begin{pmatrix} 1 & 0 & \frac{11}{10} & | & \frac{4}{10} & -\frac{1}{10} & 0 \\ 0 & 1 & -\frac{3}{10} & | & -\frac{2}{10} & \frac{3}{10} & 0 \\ 0 & 0 & 0 & | & -3 & -3 & 5 \\ \end{pmatrix} \end{aligned}$

(4) Matrix A is *not* invertible.

Josef Leydold - Foundations of Mathematics - WS 2024/25

Summary

- ► system of linear equations
- Gaussian elimination
- Gauss-Jordan elimination
- computation of inverse matrix

3 - Linear Equations - 31 / 33

3 - Linear Equations - 32 / 33