
Chapter 2

Matrix Algebra
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A Very Simplistic Leontief Model

A community operates the services PUBLIC TRANSPORT, ELECTRICITY

and GAS.

Technology matrix and weekly demand (in unit values):

expenditure of

for
transport electricity gas demand

transport 0.0 0.2 0.2 7.0

electricity 0.4 0.2 0.1 12.5

gas 0.0 0.5 0.1 16.5

What is the weekly production that satisfies the demand
(but does not create excess)?
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A Very Simplistic Leontief Model

We denote the unknown units of production of TRANSPORT,
ELECTRICITY and GAS by x1, x2,and x3, resp.
For our production we must have:

demand = production − internal expenditur

7.0 = x1 − (0.0 x1 + 0.2 x2 + 0.2 x3)

12.5 = x2 − (0.4 x1 + 0.2 x2 + 0.1 x3)

16.5 = x3 − (0.0 x1 + 0.5 x2 + 0.1 x3)

Transformation into an equivalent system of equations yields:

1.0 x1 − 0.2 x2 − 0.2 x3 = 7.0
−0.4 x1 + 0.8 x2 − 0.1 x3 = 12.5

0.0 x1 − 0.5 x2 + 0.9 x3 = 16.5

Which values for x1, x2, and x3 solves these equations simultaneously?
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Matrix

An m × n matrix is a rectangular array of mathematical expressions
(e.g., numbers) that consists of m rows and n columns.

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn




= (aij)

Alternative notation: square brackets [aij].

The terms aij are called elements or coefficients of matrix A,
the integers i and j are called row index and column index, resp.

Matrices are denoted by bold upper case Latin letters,
its coefficients by the corresponding lower case Latin letters.
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Vector

▶ A (column) vector is an n× 1 matrix: x =




x1
...

xn




▶ A row vector is a 1× n-Matrix: xT = (x1, . . . , xn)

▶ The i-th unit vector ei is a vector where the i-th component is
equal to 1 and all other components are 0.

Vectors are denoted by bold lower case Latin letters.

We write A = (a1, . . . , an) for a matrix with columns a1, . . . , an.
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Elements of a Matrix

We use the symbol

[
A
]

ij = aij

to denote the coefficient with respective row and column index i and j.

The convenient symbol

δij =

{
1, if i = j,
0, if i ̸= j.

is called the Kronecker symbol.

Example of its usage: [I]ij = δij.
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Special Matrices

▶ An n× n matrix is called square matrix.

▶ An upper triangular matrix is a square matrix where all elements
below the main diagonal are zero.

U =



−1 −3 1
0 2 3
0 0 −2




Formally:
Matrix U is an upper triangular matrix if

[U]ij = 0 whenever i > j.
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Special Matrices

▶ A lower triangular matrix is a square matrix where all elements
above the main diagonal are zero.

L =




1 0 0
2 3 0
0 4 0




Formally:
Matrix L is a lower triangular matrix if

[L]ij = 0 whenever i < j.

Josef Leydold – Foundations of Mathematics – WS 2024/25 2 – Matrix Algebra – 8 / 36



Special Matrices

▶ A diagonal matrix is a square matrix where all elements outside
the main diagonal are zero.

D =




1 0 0
0 2 0
0 0 3




Formally:
Matrix D is a diagonal matrix if

[D]ij = 0 whenever i ̸= j.
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Special Matrices

▶ A matrix where all its coefficients are zero is called a zero matrix
and is denoted by On,m or 0.

▶ An identity matrix is a diagonal matrix where all its diagonal
entries are equal to 1. It is denoted by In or I.
(In German literature also symbol E is used.)

I3 =




1 0 0
0 1 0
0 0 1




Remark: Both identity matrix In and zero matrix On,n are examples of
upper and lower triangular matrices and of a diagonal matrix.
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Transposed Matrix

We get the transposed AT of matrix A by exchanging rows and
columns:

[
AT
]

ij
= [A]ji

(
1 2 3
4 5 6

)T

=




1 4
2 5
3 6




Alternative notation: A′
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Symmetric Matrix

A matrix A is called symmetric if

AT = A

i.e., if

[A]ij = [A]ji for all i, j.

Obviously every symmetric matrix is a square matrix.

Matrix




1 2 3
2 4 5
3 5 6


 is symmetric.
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Scalar Multiplication

A matrix A can be multiplied by a constant (scalar) α ∈ R

component-wise:

[α ·A]ij = α [A]ij

3 ·
(

1 2
3 4

)
=

(
3 6
9 12

)
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Addition of Matrices

Two m× n matrices A and B are added component-wise:

[A + B]ij = [A]ij + [B]ij

Addition of two matrices is only possible if their numbers of rows and
columns coincide!

(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
1 + 5 2 + 6
3 + 7 4 + 8

)
=

(
6 8
10 12

)
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Multiplication of Matrices

The product A · B of two matrices A and B is defined only if the
number of columns of the first factor A coincides with the number of
rows of the second factor B.

That is, if A is an m× n matrix, then B must be an n× k matrix.
The product C = A · B then is an m× k matrix.

Element [A · B]ij is then the product of the ith row of A and the jth
column of B (in the sense of a scalar product):

[A · B]ij =
n

∑
s=1

ais · bsj

Matrix multiplication is not commutative!
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Falk’s Scheme

A · B →
↓

1 2
3 4
5 6

1 2 3
4 5 6
7 8 9

c11 c12

c21 c22

c31 c32

c21 = 1 · 4 + 5 · 3 + 6 · 5 = 49

A · B =




1 2 3
4 5 6
7 8 9


 ·




1 2
3 4
5 6


 =




22 28
49 64
76 100



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Non-Commutativity

Beware!

Matrix multiplication is not commutative!

In general we have

A · B ̸= B ·A
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Non-Commutativity

(
1 2
3 4

)
·
(

1 2 3
4 5 6

)
=

(
9 12 15
19 26 33

)

while (
1 2 3
4 5 6

)
·
(

1 2
3 4

)
is not defined




1 2
3 4
5 6


 ·

(
1 2 3
4 5 6

)
=




9 12 15
19 26 33
29 40 51




while
(

1 2 3
4 5 6

)
·




1 2
3 4
5 6


 =

(
22 28
49 64

)
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Non-Commutativity

(
1 2
3 4

)
·
(

2 3
4 5

)
=

(
10 13
22 29

)

while (
2 3
4 5

)
·
(

1 2
3 4

)
=

(
11 16
19 28

)

Josef Leydold – Foundations of Mathematics – WS 2024/25 2 – Matrix Algebra – 19 / 36

Powers of a Matrix

A2 = A ·A
A3 = A ·A ·A

...

An = A · . . . ·A︸ ︷︷ ︸
n times
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Inverse Matrix

Let A be some square matrix.
If there exists a matrix A−1 with property

A ·A−1 = A−1 ·A = I

then A−1 is called the inverse matrix of A.

Matrix A is called invertible if it has an inverse matrix.
Otherwise it is called singular.

Beware!
Our definition implies that every invertible matrix must be a square
matrix.

Remark: For any two square matrices A and B,

A · B = I implies B ·A = I.
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Calculation Rules for Matrices

A + B = B + A
(A + B) + C = A + (B + C)

A + 0 = A

(A · B) · C = A · (B · C)

I ·A = A · I = A

(α A) · B = α(A · B)
A · (α B) = α(A · B)

C · (A + B) = C ·A + C · B
(A + B) ·D = A ·D + B ·D

A and B invertible
⇒ A · B invertible

(A · B)−1 = B−1 ·A−1

(A−1)−1 = A

(A · B)T = BT ·AT

(AT)T = A
(AT)−1 = (A−1)T

Beware!

In general we have

A · B ̸= B ·A
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Computations with Matrices

For appropriate matrices we have similar calculation rules as for real
numbers.
However, we have to keep in mind:

▶ A zero matrix 0 is the analog to number 0.

▶ An identity matrix I corresponds to number 1.

▶ Matrix multiplication is not commutative!
In general we have A · B ̸= B ·A.

▶ There is no such thing like division by matrices!
Use multiplication by the inverse matrix instead.
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Example – Computations with Matrices

(A + B)2 = (A + B) · (A + B) = A2 + A · B + B ·A + B2

A−1 · (A + B) · B−1 x =

= (A−1 ·A + A−1B) · B−1 x

= (I + A−1B) · B−1 x =

= (B−1 + A−1 · B B−1)x

= (B−1 + A−1)x

= B−1 x + A−1 x
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Equations with Matrices

If we multiply an equation with matrices by some matrix A we have to
take care that multiplication is not commutative.
That is, A must be either the first or the second factor of the
multiplication on either side of the equality sign!

Beware!
There is no such thing like division by matrices!

We have to multiply by the inverse matrix instead.
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Example – Equations with Matrices

Let B + A X = 2A where A and B are known matrices.
Find matrix X?

B + A X = 2 A | − B

A X = 2 A− B | A−1 ·
A−1 ·A X = A−1 · (2 A− B)

I · X = 2 A−1A−A−1 · B
X = 2 I−A−1 · B

We have to take care that all matrix operations are defined.
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Geometric Interpretation I

We have introduced vectors as special cases of matrices.

However, vector (x1
x2
) can also be seen as a geometrical object.

It can be interpreted as

▶ a point (x1, x2) in the xy-plain.
▶ an arrow from the origin (0, 0) to point

(x1, x2) (position vector).
▶ any arrow of the same length, direction

and orientation as the position vector.
(equivalence class of arrows)

x1

x2

(2, 3)

We always choose the representation that fits our needs.

These pictures help us to think about these objects (“thinking crutch”).
However, we need formulas to verify our conjectures!
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Geometric Interpretation II

Vector addition

x1

x2

x

y

x

x + y

Multiplication by a scalar

x1

x2

y

2y

− 2
3 y
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Scalar Product

The inner product (or scalar product) of two vectors x and y:

xT y =
n

∑
i=1

xi yi

Two vectors are called orthogonal to each other, if xT y = 0 .

We also say that these vectors are normal or perpendicular or in a right
angle to each other.

The inner product of x =




1
2
3


 and y =




4
5
6


 is given by

xT y = 1 · 4 + 2 · 5 + 3 · 6 = 32
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Norm

The (Euclidean) norm ∥x∥ of vector x:

∥x∥ =
√

xT x =

√
n

∑
i=1

x2
i

A vector x is called normalized, if ∥x∥ = 1.

The norm of x =




1
2
3


 is given by

∥x∥ =
√

12 + 22 + 32 =
√

14
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Geometric Interpretation

The norm of a vector can be interpreted as its length:

∥x∥2

x2
1

x2
2

Pythagorean theorem:

∥x∥2 = x2
1 + x2

2

The inner product measures angles between two vectors:

cos∢(x, y) =
xT y

∥x∥ · ∥y∥
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Properties of the Norm

(i) ∥x∥ ≥ 0.

(ii) ∥x∥ = 0 ⇔ x = 0.

(iii) ∥αx∥ = |α| · ∥x∥ for all α ∈ R.

(iv) ∥x + y∥ ≤ ∥x∥+ ∥y∥. (Triangle inequality)
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Inequalities

▶ Cauchy-Schwarz inequality

|xTy| ≤ ∥x∥ · ∥y∥

▶ Minkowski inequality (triangle inequality)

∥x + y∥ ≤ ∥x∥+ ∥y∥

▶ Pythagorean theorem

For orthogonal vectors x and y we have

∥x + y∥2 = ∥x∥2 + ∥y∥2
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Leontief Model

A . . . technology matrix

x . . . production vector

b . . . demand vector

p . . . prices for goods

w . . . wages

Prices must cover production costs:

pj = ∑n
i=1 aij pi + wj = a1j p1 + a2j p2 + · · ·+ anj pn + wj

p = ATp + w

So for fixed wages we find:

p = (I−AT)−1w

Moreover, for the input-output model we have:

x = Ax + b
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Leontief Model

Demand is given by the wages for produced goods:

demand = w1x1 + w2x2 + · · ·+ wnxn = wTx

Supply is given by prices for demanded goods:

supply = p1b1 + p2b2 + · · ·+ pnbn = pTb

If the following equations hold in a input-output model

x = Ax + b and p = ATp + w

then we have market equilibrium, i.e., wTx = pTb.

Proof:

wTx = (pT − pTA)x = pT(I−A)x = pT(x−Ax) = pTb
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Summary

▶ matrix and vector
▶ triangular and diagonal matrix
▶ zero matrix and identity matrix
▶ transposed and symmetric matrix
▶ inverse matrix
▶ computations with matrices (matrix algebra)
▶ equations with matrices
▶ norm and inner product of vectors
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