	Economic Growth
	Problem: Maximize consumption in period [0, <i>T</i>]:
Chapter 19	$\max_{0 \le s(t) \le 1} \int_0^T (1 - s(t)) f(k(t)) dt$
Chapter 19	$f(k) \dots$ production function
Control Theory	k(t) capital stock at time t
control meory	$s(t) \ \dots$ rate of investment at time t , $\ s \in [0,1]$
	We can control $s(t)$ at each time freely. s is called control function .
	k(t) follows the differential equation
	$k'(t) = s(t) f(k(t)), k(0) = k_0, k(T) \ge k_T.$
osef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 1 / 19	Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 2 / 1
Oil Extraction	Oil Extraction
$y(t) \dots$ amount of oil in reservoir at time t $u(t) \dots$ rate of extraction at time t : $y'(t) = -u(t)$ $p(t) \dots$ market price of oil at time t	Problem I: Find an <i>extraction process</i> $u(t)$ for a fixed time period $[0, T]$ that optimizes the profit.
 C(t, y, u) extraction costs per unit of time r (constant) discount rate Problem I: Maximize revenue in fixed time horizon [0, T]: 	Problem II: Find an <i>extraction process</i> $u(t)$ <i>and time horizon</i> T that optimizes the profit.
$\max_{u(t)\geq 0} \int_0^T \left[p(t)u(t) - C(t, y(t), u(t)) \right] e^{-rt} dt$	
We can control $u(t)$ freely at each time where $u(t) \ge 0$. y(t) follows the differential equation:	
$y'(t) = -u(t), y(0) = K, y(T) \ge 0.$	
osef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 3/19	Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 4 /
The Standard Problem (T Fixed)	Hamiltonian
1. Maximize for objective function f	Analogous to the Lagrange function we define function
$\max_{u} \int_{0}^{T} f(t, y, u) dt, \qquad u \in \mathcal{U} \subseteq \mathbb{R} .$	$\mathcal{H}(t, y, u, \lambda) = \lambda_0 f(t, y, u) + \lambda(t)g(t, y, u)$
<i>u</i> is the control function , \mathcal{U} is the control region .	which is called the Hamiltonian of the standard problem.
 Controlled differential equation (initial value problem) 	Function $\lambda(t)$ is called the adjoint function .
$y' = g(t, y, u), \qquad y(0) = y_0.$	Scalar $\lambda_0 \in \{0, 1\}$ can be assumed to be 1. (However, there exist rare exceptions where $\lambda_0 = 0$.)
3. Terminal value (a) $y(T) = y$	In the following we always assume that $\lambda_0 = 1$. Then
(a) $y(T) = y_1$ (b) $y(T) \ge y_1$ [or: $y(T) \le y_1$]	$\mathcal{H}(t, y, u, \lambda) = f(t, y, u) + \lambda(t)g(t, y, u)$
(c) $y(T)$ free (y, u) is called a feasible pair if (2) and (3) are satisfied.	
osef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 5 / 19	Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 6 /
Maximum Principle	A Necessary Condition
Let (y^*, u^*) be an <i>optimal pair</i> of the standard problem. Then there exists a continuous function $\lambda(t)$ such that for all $t \in [0, T]$:	The maximum principle gives a <i>necessary</i> condition for an optimal pair of the standard problem, i.e., a feasible pair which solves the optimization problem.
(i) u^* maximizes \mathcal{H} w.r.t. u , i.e.,	That is, for every optimal pair we can find such a function $\lambda(t)$.
$\mathcal{H}(t,y^*,u^*,\lambda) \geq \mathcal{H}(t,y^*,u,\lambda)$ for all $u \in \mathcal{U}$ (ii) λ satisfies the differential equation	On the other hand if we can find such a function for some feasible pair (y_0, u_0) then (y_0, u_0) need not be optimal.
$\lambda' = -rac{\partial}{\partial y}\mathcal{H}(t,y^*,u^*,\lambda)$	However, it is a <i>candidate</i> for an optimal pair.
$\Lambda = -\frac{\partial y}{\partial y} \pi(t, y, u, \lambda)$	(Comparable to the role of stationary points in static constraint
(iii) Transversality condition (a) $y(T) = y_1$: $\lambda(T)$ free	optimization problems.)
(b) $y(T) \ge y_1$: $\lambda(T) \ge 0$ [with $\lambda(T) = 0$ if $y^*(T) > y_1$] (c) $y(T)$ free: $\lambda(T) = 0$	

A Sufficient Condition	Recipe
Let (y^*, u^*) be a feasible pair of the standard problem and $\lambda(t)$ some function that satisfies the maximum principle.	1. For every triple (t, y, λ) find a (global) maximum $\hat{u}(t, y, \lambda)$ of $\mathcal{H}(t, y, u, \lambda)$ w.r.t. u .
If \mathcal{U} is convex and $\mathcal{H}(t, y, u, \lambda)$ is concave in (y, u) for all $t \in [0, T]$,	 Solve system of differential equations
then (y^*, u^*) is an optimal pair.	$y' = g(t, y, \hat{u}(t, y, \lambda), \lambda)$
	$\lambda' = -\mathcal{H}_y(t, y, \hat{u}(t, y, \lambda), \lambda)$
	3. Find particular solutions $y^*(t)$ and $\lambda^*(t)$ which satisfy initial condition $y(0) = y_0$ and the transversality condition, resp.
	4. We get candidates for an optimal pair by $y^*(t)$ and $u^*(t) = \hat{u}(t, y^*, \lambda^*)$.
	5. If \mathcal{U} is convex and $\mathcal{H}(t, y, u, \lambda^*)$ is concave in (y, u) , then (y^*, u^*) is an optimal pair.
Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 9 / 19	Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 10 / 1
Example 1	Example 1
Find optimal control u^* for	
·	$\mathcal{H}(t, y, u, \lambda) = y + \lambda(y + u)$
$\max \int_0^2 y(t) dt, u \in [0,1]$	Maximum \hat{u} of \mathcal{H} w.r.t. u :
y' = y + u, y(0) = 0, y(2) free	$\hat{u} = egin{cases} 1, & ext{if } \lambda \geq 0, \ 0, & ext{if } \lambda < 0. \end{cases}$
Heuristically:	$\Big\{0, \text{if } \lambda < 0.$
Objective function y and thus u should be as large as possible.	Solution of the (inhomogeneous linear) ODE
Therefore we expect that $u^*(t) = 1$ for all t .	$\lambda' = -\mathcal{H}_y = -(1+\lambda), \lambda(2) = 0$ $\Rightarrow \lambda^*(t) = e^{2-t} - 1.$
Hamiltonian:	
$\mathcal{H}(t, y, u, \lambda) = f(t, y, u) + \lambda g(t, y, u) = y + \lambda (y + u)$	As $\lambda^*(t) = e^{2-t} - 1 \ge 0$ for all $t \in [0,2]$ we have $\hat{u}(t) = 1$.
Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 11 / 19	Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 12 / 1
Example 1	Example 2
Solution of the (inhomogeneous linear) ODE	Find the optimal control u^* for
$y' = y + \hat{u} = y + 1, y(0) = 0$	$\min \int_0^T \left[y^2(t) + cu^2(t) \right] dt, u \in \mathbb{R}, c > 0$
$\Rightarrow y^*(t) = e^t - 1$.	
We thus obtain	$y' = u, y(0) = y_0, y(T)$ free
$u^*(t) = \hat{u}(t) = 1.$	We have to solve the maximization problem
Hamiltonian $\mathcal{H}(t, y, u, \lambda) = y + \lambda(y + u)$ is linear and thus concave in (y, u) .	$\max \int_0^T - \left[y^2(t) + cu^2(t)\right] dt$
$u^*(t) = 1$ is the optimal control we sought for.	$\int_0^{1} \left[\mathcal{G}(t) + \mathcal{G}(t) \right] dt$
u(t) = 1 is the optimal control we sought for.	Hamiltonian:
	$\mathcal{H}(t, y, u, \lambda) = f(t, y, u) + \lambda g(t, y, u) = -y^2 - cu^2 + \lambda u$
Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 13 / 19	Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 14 /
Example 2	Example 2
Maximum \hat{u} of \mathcal{H} w.r.t. u :	Initial condition $y(0)=y_0$ and transversality condition, resp., yield
$0 = \mathcal{H}_u = -2c\hat{u} + \lambda \qquad \Rightarrow \qquad \hat{u} = rac{\lambda}{2c}$	$\lambda^{*'}(0) = 2y(0) = 2y_0$
Solution of the (system of) differential equations	$\lambda^*(T)=0$ and thus
$y' = \hat{u} = \frac{\lambda}{2c}$	$r(C_1 - C_2) = 2y_0$
$\lambda' = -\mathcal{H}_y = 2y$	$C_1 e^{rT} + C_2 e^{-rT} = 0$
By differentiating the second ODE we get	with solutions $2y_0e^{-rT}$ C $2y_0e^{rT}$
	$C_1 = rac{2y_0 e^{-r_1}}{r(e^{r_1} + e^{-r_1})}, \qquad C_2 = -rac{2y_0 e^{r_1}}{r(e^{r_1} + e^{-r_1})}.$
$\lambda'' = 2y' = rac{\lambda}{c} \qquad \Rightarrow \qquad \lambda'' - rac{1}{c}\lambda = 0$	
$\lambda'' = 2y' = \frac{\lambda}{c} \qquad \Rightarrow \qquad \lambda'' - \frac{1}{c}\lambda = 0$ Solution of the (homogeneous linear) ODE of second order	
t t	
Solution of the (homogeneous linear) ODE of second order	

Example 2	Standard Problem (T Variable)
Consequently we obtain $\begin{split} \lambda^*(t) &= \frac{2y_0}{r(e^{rT} + e^{-rT})} \left(e^{-r(T-t)} - e^{r(T-t)} \right) \\ y^*(t) &= \frac{1}{2} \lambda^*(t) = y_0 \frac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})} \\ u^*(t) &= \hat{u}(t, y^*, \lambda^*) = \frac{1}{2c} \lambda^*(t) = \frac{y_0}{c} \frac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})} \end{split}$ It is easy to verify that Hamiltonian $\mathcal{H}(t, y, u, \lambda) = -y^2 - cu^2 + \lambda u$ is concave in y and u. $u^*(t) &= \frac{y_0}{c} \frac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})}$ is the optimal control.	If time horizon $[0, T]$ is not fixed in advanced we have to find an optimal time period $[0, T^*]$ in addition to the optimal control u^* . For this purpose we have to add the following condition to the maximum principle (in addition to (i)–(iii)). (iv) $\mathcal{H}(T^*, y^*(T^*), u^*(T^*), \lambda(T^*)) = 0$ The recipe for solving the optimization problem remains essentially the same.
Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 17 / 1	9 Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 18 / 19
 Summary standard problem Hamiltonian function maximum principle a sufficient condition 	
Josef Leydold - Foundations of Mathematics - WS 2024/25 19 - Control Theory - 19 / 1	9