
Chapter 19

Control Theory
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Economic Growth

Problem: Maximize consumption in period [0, T]:

max
0≤s(t)≤1

∫ T

0
(1− s(t)) f (k(t)) dt

f (k) . . . production function

k(t) . . . capital stock at time t
s(t) . . . rate of investment at time t , s ∈ [0, 1]

We can control s(t) at each time freely.
s is called control function.

k(t) follows the differential equation

k′(t) = s(t) f (k(t)), k(0) = k0, k(T) ≥ kT .
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Oil Extraction

y(t) . . . amount of oil in reservoir at time t
u(t) . . . rate of extraction at time t: y′(t) = −u(t)
p(t) . . . market price of oil at time t

C(t, y, u) . . . extraction costs per unit of time

r . . . (constant) discount rate

Problem I: Maximize revenue in fixed time horizon [0, T]:

max
u(t)≥0

∫ T

0

[
p(t)u(t)− C(t, y(t), u(t))

]
e−rt dt

We can control u(t) freely at each time where u(t) ≥ 0.

y(t) follows the differential equation:

y′(t) = −u(t), y(0) = K, y(T) ≥ 0 .
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Oil Extraction

Problem I:
Find an extraction process u(t) for a fixed time period [0, T] that
optimizes the profit.

Problem II:
Find an extraction process u(t) and time horizon T that optimizes the
profit.
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The Standard Problem (T Fixed)

1. Maximize for objective function f

max
u

∫ T

0
f (t, y, u) dt, u ∈ U ⊆ R .

u is the control function, U is the control region.

2. Controlled differential equation (initial value problem)

y′ = g(t, y, u), y(0) = y0 .

3. Terminal value
(a) y(T) = y1
(b) y(T) ≥ y1 [or: y(T) ≤ y1]
(c) y(T) free

(y, u) is called a feasible pair if (2) and (3) are satisfied.
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Hamiltonian

Analogous to the Lagrange function we define function

H(t, y, u, λ) = λ0 f (t, y, u) + λ(t)g(t, y, u)

which is called the Hamiltonian of the standard problem.

Function λ(t) is called the adjoint function.

Scalar λ0 ∈ {0, 1} can be assumed to be 1.
(However, there exist rare exceptions where λ0 = 0.)

In the following we always assume that λ0 = 1. Then

H(t, y, u, λ) = f (t, y, u) + λ(t)g(t, y, u)
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Maximum Principle

Let (y∗, u∗) be an optimal pair of the standard problem.
Then there exists a continuous function λ(t) such that for all t ∈ [0, T]:

(i) u∗ maximizes H w.r.t. u, i.e.,

H(t, y∗, u∗, λ) ≥ H(t, y∗, u, λ) for all u ∈ U

(ii) λ satisfies the differential equation

λ′ = − ∂

∂y
H(t, y∗, u∗, λ)

(iii) Transversality condition
(a) y(T) = y1: λ(T) free

(b) y(T) ≥ y1: λ(T) ≥ 0 [with λ(T) = 0 if y∗(T) > y1]

(c) y(T) free: λ(T) = 0
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A Necessary Condition

The maximum principle gives a necessary condition for an optimal
pair of the standard problem, i.e., a feasible pair which solves the
optimization problem.

That is, for every optimal pair we can find such a function λ(t).

On the other hand if we can find such a function for some feasible pair
(y0, u0) then (y0, u0) need not be optimal.

However, it is a candidate for an optimal pair.

(Comparable to the role of stationary points in static constraint
optimization problems.)
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A Sufficient Condition

Let (y∗, u∗) be a feasible pair of the standard problem and λ(t) some
function that satisfies the maximum principle.

If U is convex and H(t, y, u, λ) is concave in (y, u) for all t ∈ [0, T],
then (y∗, u∗) is an optimal pair.
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Recipe

1. For every triple (t, y, λ) find a (global) maximum û(t, y, λ) of
H(t, y, u, λ) w.r.t. u.

2. Solve system of differential equations

y′ = g(t, y, û(t, y, λ), λ)

λ′ = −Hy(t, y, û(t, y, λ), λ)

3. Find particular solutions y∗(t) and λ∗(t) which satisfy initial
condition y(0) = y0 and the transversality condition, resp.

4. We get candidates for an optimal pair by y∗(t) and
u∗(t) = û(t, y∗, λ∗).

5. If U is convex and H(t, y, u, λ∗) is concave in (y, u),
then (y∗, u∗) is an optimal pair.
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Example 1

Find optimal control u∗ for

max
∫ 2

0
y(t) dt, u ∈ [0, 1]

y′ = y + u, y(0) = 0, y(2) free

Heuristically:
Objective function y and thus u should be as large as possible.
Therefore we expect that u∗(t) = 1 for all t.

Hamiltonian:

H(t, y, u, λ) = f (t, y, u) + λg(t, y, u) = y + λ(y + u)

Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 11 / 19

Example 1

H(t, y, u, λ) = y + λ(y + u)

Maximum û of H w.r.t. u:

û =

{
1, if λ ≥ 0,

0, if λ < 0.

Solution of the (inhomogeneous linear) ODE

λ′ = −Hy = −(1 + λ), λ(2) = 0

⇒ λ∗(t) = e2−t − 1 .

As λ∗(t) = e2−t − 1 ≥ 0 for all t ∈ [0, 2] we have û(t) = 1.
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Example 1

Solution of the (inhomogeneous linear) ODE

y′ = y + û = y + 1, y(0) = 0

⇒ y∗(t) = et − 1 .

We thus obtain

u∗(t) = û(t) = 1 .

Hamiltonian H(t, y, u, λ) = y + λ(y + u) is linear
and thus concave in (y, u).

u∗(t) = 1 is the optimal control we sought for.
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Example 2

Find the optimal control u∗ for

min
∫ T

0

[
y2(t) + cu2(t)

]
dt, u ∈ R, c > 0

y′ = u, y(0) = y0, y(T) free

We have to solve the maximization problem

max
∫ T

0
−
[
y2(t) + cu2(t)

]
dt

Hamiltonian:

H(t, y, u, λ) = f (t, y, u) + λg(t, y, u) = −y2 − cu2 + λu
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Example 2

Maximum û of H w.r.t. u:

0 = Hu = −2cû + λ ⇒ û = λ
2c

Solution of the (system of) differential equations

y′ = û =
λ

2c
λ′= −Hy = 2y

By differentiating the second ODE we get

λ′′ = 2y′ =
λ

c
⇒ λ′′ − 1

c
λ = 0

Solution of the (homogeneous linear) ODE of second order

λ∗(t) = C1ert + C2e−rt, with r = 1√
c

(± 1√
c are the two roots of the characteristic polynomial.)

Josef Leydold – Foundations of Mathematics – WS 2024/25 19 – Control Theory – 15 / 19



Example 2

Initial condition y(0) = y0 and transversality condition, resp., yield

λ∗′(0) = 2y(0) = 2y0
λ∗(T) = 0

and thus

r(C1 − C2) = 2y0

C1erT + C2e−rT = 0

with solutions

C1 = 2y0e−rT

r(erT+e−rT)
, C2 = − 2y0erT

r(erT+e−rT)
.
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Example 2

Consequently we obtain

λ∗(t) = 2y0
r(erT+e−rT)

(
e−r(T−t) − er(T−t)

)

y∗(t) = 1
2 λ∗(t) = y0

e−r(T−t)−er(T−t)

r(erT+e−rT)

u∗(t) = û(t, y∗, λ∗) = 1
2c λ∗(t) = y0

c
e−r(T−t)−er(T−t)

r(erT+e−rT)

It is easy to verify that Hamiltonian H(t, y, u, λ) = −y2 − cu2 + λu is
concave in y and u.

u∗(t) = y0
c

e−r(T−t)−er(T−t)

r(erT+e−rT)
is the optimal control.
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Standard Problem (T Variable)

If time horizon [0, T] is not fixed in advanced we have to find an optimal
time period [0, T∗] in addition to the optimal control u∗.

For this purpose we have to add the following condition to the maximum
principle (in addition to (i)–(iii)).

(iv) H(T∗, y∗(T∗), u∗(T∗), λ(T∗)) = 0

The recipe for solving the optimization problem remains essentially the
same.
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Summary

▶ standard problem
▶ Hamiltonian function
▶ maximum principle
▶ a sufficient condition
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