

OII Extraction
Problem 1:
Find an extraction process
$$u(t)$$
 for a fixed time period $[0, T]$ that
optimizes the profit.
Problem 11:
Find an extraction process $u(t)$ and time horizon T that optimizes the
profit.
Problem 12:
Find an extraction process $u(t)$ and time horizon T that optimizes the
profit.
Problem 13:
Find an extraction process $u(t)$ and time horizon T that optimizes the
profit.
Problem 14:
Find an extraction process $u(t)$ and time horizon T that optimizes the
profit.
Problem 12:
Problem 12:
Problem 12:
Problem 12:
Problem 12:
The Standard Problem (T Fixed)
1. Maximize for objective function f
 $\max_{u} \int_{0}^{T} f(t, y, u) dt$, $u \in U \subseteq \mathbb{R}$.
 u is the control function, U is the control region.
2. Controlled differential equation (initial value problem)
 $y' = g(t, y, u)$, $y(0) = y_0$.
3. Terminal value
(a) $y(T) = y_1$
(b) $y(T) \geq y_1$
(c) $y(T)$ free
(y, u) is called a feasible pair if (2) and (3) are satisfied.
Proved theorem $H(t, y, u, \lambda) = \lambda_0 f(t, y, u) + \lambda(t)g(t, y, u)$
which is called the Hamiltonian of the standard problem.
Function $\lambda(t)$ is called the adjoint function.
Scalar $\lambda_0 \in \{0, 1\}$ can be assumed to be 1.
(However, there exist rare exceptions where $\lambda_0 = 0$.)
In the following we always assume that $\lambda_0 = 1$. Then
 $H(t, y, u, \lambda) = f(t, y, u) + \lambda(t)g(t, y, u)$

19 - Control Theory - 6 / 19

Maximum Principle

Let (y^*, u^*) be an *optimal pair* of the standard problem. Then there exists a continuous function $\lambda(t)$ such that for all $t \in [0, T]$:

(i) u^* maximizes \mathcal{H} w.r.t. u, i.e.,

$$\mathcal{H}(t, y^*, u^*, \lambda) \geq \mathcal{H}(t, y^*, u, \lambda)$$
 for all $u \in \mathcal{U}$

(ii) λ satisfies the differential equation

$$\lambda' = -\frac{\partial}{\partial y}\mathcal{H}(t, y^*, u^*, \lambda)$$

(iii) Transversality condition

(a) $y(T) = y_1$: $\lambda(T)$ free

- (b) $y(T) \ge y_1$: $\lambda(T) \ge 0$ [with $\lambda(T) = 0$ if $y^*(T) > y_1$]
- (c) y(T) free: $\lambda(T) = 0$

19 - Control Theory - 7 / 19

A Necessary Condition

Josef Leydold - Foundations of Mathematics - WS 2024/25

The maximum principle gives a *necessary* condition for an **optimal pair** of the standard problem, i.e., a feasible pair which solves the optimization problem.

That is, for every optimal pair we can find such a function $\lambda(t)$.

On the other hand if we can find such a function for some feasible pair (y_0, u_0) then (y_0, u_0) need not be optimal.

However, it is a *candidate* for an optimal pair.

(Comparable to the role of stationary points in static constraint optimization problems.)

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 8 / 19

A Sufficient Condition

Let (y^*, u^*) be a feasible pair of the standard problem and $\lambda(t)$ some function that satisfies the maximum principle.

If \mathcal{U} is convex and $\mathcal{H}(t, y, u, \lambda)$ is concave in (y, u) for all $t \in [0, T]$, then (y^*, u^*) is an optimal pair.

Recipe

- **1.** For every triple (t, y, λ) find a (global) maximum $\hat{u}(t, y, \lambda)$ of $\mathcal{H}(t, y, u, \lambda)$ w.r.t. u.
- 2. Solve system of differential equations

$$y' = g(t, y, \hat{u}(t, y, \lambda), \lambda)$$

$$\lambda' = -\mathcal{H}_y(t, y, \hat{u}(t, y, \lambda), \lambda)$$

- **3.** Find particular solutions $y^*(t)$ and $\lambda^*(t)$ which satisfy initial condition $y(0) = y_0$ and the transversality condition, resp.
- 4. We get candidates for an optimal pair by $y^*(t)$ and $u^*(t) = \hat{u}(t, y^*, \lambda^*)$.
- 5. If \mathcal{U} is convex and $\mathcal{H}(t, y, u, \lambda^*)$ is concave in (y, u), then (y^*, u^*) is an optimal pair.

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 10 / 19

Example 1

Find optimal control u^* for

$$\max \int_{0}^{2} y(t) dt, \quad u \in [0, 1]$$
$$y' = y + u, \quad y(0) = 0, \quad y(2) \text{ free}$$

Heuristically:

Objective function y and thus u should be as large as possible. Therefore we expect that $u^*(t) = 1$ for all t.

Hamiltonian:

$$\mathcal{H}(t, y, u, \lambda) = f(t, y, u) + \lambda g(t, y, u) = y + \lambda (y + u)$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 11 / 19

Example 1

$$\mathcal{H}(t, y, u, \lambda) = y + \lambda(y + u)$$

Maximum \hat{u} of \mathcal{H} w.r.t. u:

$$\hat{u} = \begin{cases} 1, & \text{if } \lambda \ge 0, \\ 0, & \text{if } \lambda < 0. \end{cases}$$

Solution of the (inhomogeneous linear) ODE

$$\lambda' = -\mathcal{H}_y = -(1+\lambda), \quad \lambda(2) = 0$$

$$\Rightarrow \quad \lambda^*(t) = e^{2-t} - 1.$$

As $\lambda^*(t) = e^{2-t} - 1 \ge 0$ for all $t \in [0, 2]$ we have $\hat{u}(t) = 1$.

Example 1

Solution of the (inhomogeneous linear) ODE

$$y' = y + \hat{u} = y + 1, \quad y(0) = 0$$

 $\Rightarrow \quad y^*(t) = e^t - 1.$

We thus obtain

 $u^*(t) = \hat{u}(t) = 1$.

Hamiltonian $\mathcal{H}(t, y, u, \lambda) = y + \lambda(y + u)$ is linear and thus concave in (y, u).

 $u^*(t) = 1$ is the optimal control we sought for.

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 13 / 19

Example 2

Find the optimal control u^* for

$$\min \int_0^1 \left[y^2(t) + cu^2(t) \right] dt, \quad u \in \mathbb{R}, \quad c > 0$$
$$y' = u, \quad y(0) = y_0, \quad y(T) \text{ free}$$

We have to solve the maximization problem

m

$$\max \int_0^T - \left[y^2(t) + cu^2(t) \right] dt$$

Hamiltonian:

$$\mathcal{H}(t, y, u, \lambda) = f(t, y, u) + \lambda g(t, y, u) = -y^2 - cu^2 + \lambda u$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 14 / 19

Example 2

Maximum \hat{u} of \mathcal{H} w.r.t. u:

$$0 = \mathcal{H}_u = -2c\hat{u} + \lambda \qquad \Rightarrow \qquad \hat{u} = \frac{\lambda}{2c}$$

Solution of the (system of) differential equations

$$y' = \hat{u} = \frac{\lambda}{2c}$$
$$\lambda' = -\mathcal{H}_y = 2y$$

By differentiating the second ODE we get

$$\lambda'' = 2y' = \frac{\lambda}{c} \qquad \Rightarrow \qquad \lambda'' - \frac{1}{c}\lambda = 0$$

Solution of the (homogeneous linear) ODE of second order

$$\lambda^*(t) = C_1 e^{rt} + C_2 e^{-rt}, \quad \text{with } r = \frac{1}{\sqrt{c}}$$

 $(\pm \frac{1}{\sqrt{c}}$ are the two roots of the characteristic polynomial.)

Josef Leydold - Foundations of Mathematics - WS 2024/25

Example 2

Initial condition $y(0) = y_0$ and transversality condition, resp., yield

$$\lambda^{*'}(0) = 2y(0) = 2y_0$$

 $\lambda^{*}(T) = 0$

and thus

$$r(C_1 - C_2) = 2y_0$$

$$C_1 e^{rT} + C_2 e^{-rT} = 0$$

with solutions

$$C_1 = \frac{2y_0 e^{-rT}}{r(e^{rT} + e^{-rT})}, \qquad C_2 = -\frac{2y_0 e^{rT}}{r(e^{rT} + e^{-rT})}.$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 16 / 19

Example 2

Consequently we obtain

$$\begin{split} \lambda^*(t) &= \frac{2y_0}{r(e^{rT} + e^{-rT})} \left(e^{-r(T-t)} - e^{r(T-t)} \right) \\ y^*(t) &= \frac{1}{2} \lambda^*(t) = y_0 \frac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})} \\ u^*(t) &= \hat{u}(t, y^*, \lambda^*) = \frac{1}{2c} \lambda^*(t) = \frac{y_0}{c} \frac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})} \end{split}$$

It is easy to verify that Hamiltonian $\mathcal{H}(t, y, u, \lambda) = -y^2 - cu^2 + \lambda u$ is concave in y and u.

$$u^*(t) = rac{y_0}{c} rac{e^{-r(T-t)} - e^{r(T-t)}}{r(e^{rT} + e^{-rT})}$$
 is the optimal control.

Josef Leydold - Foundations of Mathematics - WS 2024/25

19 - Control Theory - 17 / 19

Standard Problem (T Variable)

If time horizon [0, T] is not fixed in advanced we have to find an optimal time period $[0, T^*]$ in addition to the optimal control u^* .

For this purpose we have to add the following condition to the maximum principle (in addition to (i)-(iii)).

(iv)
$$\mathcal{H}(T^*, y^*(T^*), u^*(T^*), \lambda(T^*)) = 0$$

The recipe for solving the optimization problem remains essentially the same.

