Chapter 19

Control Theory
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Economic Growth

Problem: Maximize consumption in period [0, T|:

max /OT(1 —s(8) F(k(D)) dt

0<s(t)<1

f (k) ... production function
k(t) ... capital stock at time ¢
s(t) ... rate of investment attime t, s € [0,1]

We can control s(t) at each time freely.
s is called control function.

k(t) follows the differential equation

K (t) =s(t) f(k(t)), k(0) =ko, Kk(T)=kr.
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Oil Extraction

y(t) ... amount of oil in reservoir at time ¢
u(t) ... rate of extraction at time t:  y/(t) = —u(t)
p(t) ... market price of oil at time ¢
C(t,y,u) ... extraction costs per unit of time
r ... (constant) discount rate

Problem I: Maximize revenue in fixed time horizon [0, T]:

max /OT [p(H)u(t) — C(ty(b), u(t))] e dt

u(t)>0

We can control u(t) freely at each time where u(t) > 0.

y(t) follows the differential equation:

y'(t) = —u(t), y(0)=K, y(T)>0.

Josef Leydold — Foundations of Mathematics — WS 2024/25 19 — Control Theory — 3/19




Oil Extraction

Problem I:
Find an extraction process u(t) for a fixed time period [0, T] that
optimizes the profit.

Problem II:
Find an extraction process u(t) and time horizon T that optimizes the
profit.
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The Standard Problem (T Fixed)

1. Maximize for objective function f

T
max/ f(t,y,u)dt, uecldCR.
u Jo

u is the control function, { is the control region.

2. Controlled differential equation (initial value problem)

v =gtyu), y0)=yo.

3. Terminal value

@ y(T) =wn
(b) y(T) >y1  [or:y(T) <yl
(c) y(T) free

(y,u) is called a feasible pair if (2) and (3) are satisfied.
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Hamiltonian

Analogous to the Lagrange function we define function

H(ty,u,A) = Ao f(t,y,u) + A(t)g(ty,u)

which is called the Hamiltonian of the standard problem.
Function A(t) is called the adjoint function.

Scalar Ap € {0,1} can be assumed to be 1.
(However, there exist rare exceptions where Ay = 0.)

In the following we always assume that A = 1. Then

H(ty,u,A) = f(t,y,u) +A(t)g(t y,u)
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Maximum Principle

Let (y*, u*) be an optimal pair of the standard problem.
Then there exists a continuous function A(t) such that for all t € [0, T|:

(i) u* maximizes H w.r.t. u, i.e.,
H(t,y* u*,A) > H(t,y",u,A) foralueUd
(ii) A satisfies the differential equation

d
r_ * %
A= —ay?'-[(t,y Ju*,A)

(ili) Transversality condition
@ y(T) =y1: A(T) free
0 y(T) >y1: MT) >0 [with A(T) = 0if y*(T) > y1]
() y(T)free: A(T)=0
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A Necessary Condition

The maximum principle gives a necessary condition for an optimal
pair of the standard problem, i.e., a feasible pair which solves the
optimization problem.

That is, for every optimal pair we can find such a function A().

On the other hand if we can find such a function for some feasible pair
(Yo, uo) then (yo, 1) need not be optimal.

However, it is a candidate for an optimal pair.

(Comparable to the role of stationary points in static constraint
optimization problems.)
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A Sufficient Condition

Let (y*, u*) be a feasible pair of the standard problem and A(t) some
function that satisfies the maximum principle.

If U is convex and #H(t,y,u, A) is concave in (y,u) for all t € [0, T},
then (y*,u*) is an optimal pair.
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Recipe

1. For every triple (t,y, A) find a (global) maximum #(t,y, A) of
Ht,y,u,A) wrt. u.

2. Solve system of differential equations

yl — g(t/ylﬁ(t/y/A)’)\)
)L/ == _Hy(t/y/ﬁ(tlyl)\)/)\)

3. Find particular solutions y*(t) and A*(t) which satisfy initial
condition y(0) = yo and the transversality condition, resp.

4. We get candidates for an optimal pair by y*(¢) and
u*(t) = At y*, A*).

5. If U is convex and H(t,y, u, A*) is concave in (y, u),
then (y*,u*) is an optimal pair.
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Example 1

Find optimal control u* for

2
max / y(t)dt, uel01]
0

v =y+u y(0)=0, y(2)free

Heuristically:
Objective function v and thus u should be as large as possible.
Therefore we expect that u*(t) = 1 for all ¢.

Hamiltonian:
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Example 1

Maximum 7 of H w.r.t. u:

X 1, ifA>0,
o, ifA<O.

Solution of the (inhomogeneous linear) ODE
AN=-H,=—(1+A), A(2)=0
= A({t)=eT-1.

As A*(t) =e* ' —1>0forallt € [0,2] we have  #(t) = 1.
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Example 1

Solution of the (inhomogeneous linear) ODE
y=y+ia=y+1, y0)=0
= y'(t)=e-1,

We thus obtain
u (t)y=a(t)=1.

Hamiltonian #H (¢, y, u,A) =y + A(y + u) is linear
and thus concave in (y, u).

u*(t) = 1is the optimal control we sought for.
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Example 2

Find the optimal control u* for

T

min/ [ (t) +cu®(t)] dt, ueR, ¢>0
0
y'=u, y(0)=yo, y(T)free
We have to solve the maximization problem
T
max/ — [2(t) + cu?(t)] dt
0

Hamiltonian:

H(ty,u,A) = f(ty,u) +Ag(ty,u) = —yz —cu® + Au
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Example 2

Maximum 7 of H w.r.t. u:

0=Hy=-2c0+A = Q=4

Solution of the (system of) differential equations
A
Y 2c

,:ﬁ:

By differentiating the second ODE we get
A 1
AN =2y == = A= ZA=0
c c
Solution of the (homogeneous linear) ODE of second order

A*(t) = Cret + Cre™,  withr = %

(i% are the two roots of the characteristic polynomial.)
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Example 2

Initial condition ¥(0) = yo and transversality condition, resp., yield
A*(0) = 2y(0) = 2yo
A*(T) =0
and thus
T’(Cl — Cz) = 2y0
ClerT + CinrT =0
with solutions

_ Zyoe—rT . zyoerT
Cl - r(erT+e—rT)/ C2 - r(erT+e—VT) .
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Example 2

Consequently we obtain
% 2 —H(T— _
N () = sty (T — o (T0)

—r(T—t) _ ,r(T—t)
yE(t) = 32 (1) = Yo Srrreomy

(T—t) _or(T—1)

W () = Al y", A) = 3AN () = Rty

It is easy to verify that Hamiltonian H(t,y,u,A) = —y* — cu® + Au is
concave in iy and u.

—r(T—t) _pr(T—t)

ut(t) = L T is the optimal control.
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Standard Problem (T Variable)

If ime horizon [0, T is not fixed in advanced we have to find an optimal
time period [0, T*] in addition to the optimal control u*.

For this purpose we have to add the following condition to the maximum
principle (in addition to (i)—(iii)).

(iv) H(T",y"(T"),u"(T"),A(T")) = 0

The recipe for solving the optimization problem remains essentially the
same.
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Summary

» standard problem
» Hamiltonian function
» maximum principle
» a sufficient condition
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