Chapter 18 Difference Equation Note: Leydol - Foundations of Mathematics - WS 2024/25 18 - Difference Equation - 1/44	First Difference Suppose a state variable y can only be estimated at discrete time points t_1, t_2, t_3, \ldots In particular we assume that $t_i \in \mathbb{N}$. Thus we can describe the behavior of such a variable by means of a map $\mathbb{N} \to \mathbb{R}, t \mapsto y(t)$ i.e., a sequence. We write y_t instead of $y(t)$. For the marginal changes of y we have to replace the differential quotient $\frac{dy}{dt}$ by the difference quotient $\frac{\Delta y}{\Delta t}$. So if $\Delta t = 1$ this reduces to the first difference $\Delta y_t = y_{t+1} - y_t$ Josef Leydeld - Foundations of Mathematics - WS 2024/25 18 - Difference Equation - 2/44
Hules for Differences For differences similar rules can be applied as for derivatives: $ \Delta(c y_t) = c \Delta y_t $ $ \Delta(y_t + z_t) = \Delta y_t + \Delta z_t $ Summation rule $ \Delta(y_t \cdot z_t) = y_{t+1} \Delta z_t + z_t \Delta y_t $ Product rule $ \Delta\left(\frac{y_t}{z_t}\right) = \frac{z_t \Delta y_t - y_t \Delta z_t}{z_t z_{t+1}} $ Quotient rule	Differences of Higher Order The <i>k</i> -th derivative $\frac{d^k y}{dt^k}$ has to be replaced by the difference of order <i>k</i> : $\Delta^k y_t = \Delta(\Delta^{k-1} y_t) = \Delta^{k-1} y_{t+1} - \Delta^{k-1} y_t$ For example the second difference is then $\Delta^2 y_t = \Delta(\Delta y_t) = \Delta y_{t+1} - \Delta y_t$ $= (y_{t+2} - y_{t+1}) - (y_{t+1} - y_t)$ $= y_{t+2} - 2y_{t+1} + y_t$
Josef Leydold - Foundations of Mathematics - WS 2024/2518 - Difference EquationA difference EquationA difference equation is an equation that contains the differences of a sequence. It is of order n if it contains a difference of order n (but not higher). $\Delta y_t = 3$ difference equation of first order $\Delta y_t = \frac{1}{2}y_t$ difference equation of first order $\Delta^2 y_t + 2 \Delta y_t = -3$ difference equation of second orderIf in addition an initial value y_0 is given we have a so called initial value problem.	Image: 18 - Difference Equation - 4/44Generation of Mathematics - WS 2024/25Equivalent RepresentationDifference equations can equivalently written without Δ -notation. $\Delta y_t = 3 \Leftrightarrow y_{t+1} - y_t = 3 \Leftrightarrow y_{t+1} = y_t + 3$ $\Delta y_t = 3 \Leftrightarrow y_{t+1} - y_t = \frac{1}{2}y_t \Leftrightarrow y_{t+1} = \frac{3}{2}y_t$ $\Delta^2 y_t + 2 \Delta y_t = -3 \Leftrightarrow$ $\Leftrightarrow (y_{t+2} - 2y_{t+1} + y_t) + 2(y_{t+1} - y_t) = -3$ $\Leftrightarrow y_{t+2} = y_t - 3$ These can be seen as recursion formulæ for sequences.Problem:Find a sequence y_t which satisfies the given recursion formula for all $t \in \mathbb{N}$.
Josef Leydold - Foundations of Mathematics - WS 2024/25 Initial Value Problem and Iterations Difference equations of first order can be solved by iteratively computing the elements of the sequence if the initial value y_0 is given. Compute the solution of $y_{t+1} = y_t + 3$ with initial value y_0 . $y_1 = y_0 + 3$ $y_2 = y_1 + 3 = (y_0 + 3) + 3 = y_0 + 2 \cdot 3$ $y_3 = y_2 + 3 = (y_0 + 2 \cdot 3) + 3 = y_0 + 3 \cdot 3$ $y_t = y_0 + 3 t$ For initial value $y_0 = 5$ we obtain $y_t = 5 + 3 t$.	Josef Leydold – Foundations of Mathematics – WS 2024/25 Example – Iterations Compute the solution of $y_{t+1} = \frac{3}{2}y_t$ with initial value y_0 . $y_1 = \frac{3}{2}y_0$ $y_2 = \frac{3}{2}y_1 = \frac{3}{2}(\frac{3}{2}y_0) = (\frac{3}{2})^2 y_0$ $y_3 = \frac{3}{2}y_2 = \frac{3}{2}(\frac{3}{2}^2 y_0) = (\frac{3}{2})^3 y_0$ $y_t = (\frac{3}{2})^t y_0$ For initial value $y_0 = 5$ we obtain $y_t = 5 \cdot (\frac{3}{2})^t$.

$$\begin{aligned} & \textbf{Case:} \quad \frac{d_1}{2} - a_2 < 0 \\ & \textbf{Modulus and Argument} \\ & \textbf{h}_{(2)} - a_1 + b_1 \\ & \textbf{where} \\ & \textbf{h}_{(2)} - a_1 + b_1 \\ & \textbf{where} \\ & \textbf{h}_{(2)} - a_1 + b_1 \\ & \textbf{where} \\ & \textbf{h}_{(2)} - a_1 + b_1 \\ & \textbf{h}_{(2)} - a_1 \\ & \textbf{h}_{(2)} - a_1 + b_1 \\ & \textbf{h}_{(2)} - a_1 \\ & \textbf{h}_{(2$$

Example – Inhomogeneous Equation	Fixed Point of a Difference Equation
Compute the general solution of difference equation	The inhomogeneous linear difference equation
$y_{t+2} - 3 y_{t+1} + 2 y_t = 2$.	$y_{t+2} + a_1 y_{t+1} + a_2 y_t = s$
General solution of homogeneous equation $y_{t+2} - 3y_{t+1} + 2y_t = 0$:	has the special constant solution (for $a_1+a_2 eq -1$)
$y_{h,t} = C_1 + C_2 2^t$.	$y_{p,t} = \bar{y} = \frac{s}{1 + a_1 + a_2} (= \text{constant})$
As $a_1 + a_2 = -3 + 2 = -1$ and $a_1 \neq -2$ we use $y_{p,t} = \frac{2}{-3+2}t = -2t$ and obtain the general solution of the inhomogeneous equation as	Point \bar{y} is called fixed point , or equilibrium point of the difference equation.
$y_t = y_{h,t} + y_{p,t} = C_1 + C_2 2^t - 2t$.	
Josef Leydold - Foundations of Mathematics - WS 2024/25 18 - Difference Equation - 41 / 44	Josef Leydold - Foundations of Mathematics - WS 2024/25 18 - Difference Equation - 42 / 44
Stable and Unstable Fixed Points	Summary
When we review general solutions of linear difference equations (with	 differences of sequences
constant coefficients) we observe that these solutions converge to a fixed point \bar{u} for all choices of constants C if the absolute values of the	 difference equation
roots β of the characteristic equation are less than one:	homogeneous and inhomogeneous linear difference equation of first order with constant coefficients
$y_t \to \bar{y}$ for $t \to \infty$ if $ \beta < 1$.	cobweb model
In this case \bar{y} is called an asymptotically stable fixed point.	 homogeneous and inhomogeneous linear difference equation of second order with constant coefficients
	stable and unstable fixed points
Josef Leydold - Foundations of Mathematics - WS 2024/25 18 - Difference Equation - 43 / 44	Josef Leydold – Foundations of Mathematics – WS 2024/25 18 – Difference Equation – 44 / 44