
Chapter 17

Differential Equation
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A Simple Growth Model (Domar)

In Domar’s growth model we have the following assumptions:

(1) An increase of the rate of investments I(t) increases income Y(t):
dY
dt

=
1
s
· dI

dt
(s = constant)

(2) Ratio of capital stock K(t) and production capacity κ(t) is
constant:

κ(t)
K(t)

= ϱ (= constant)

(E) In equilibrium we have:

Y = κ

Problem: Which flow of investment causes our model to remain in
equilibrium for all times t ≥ 0?
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A simple Growth Model (Domar)

We search for a function I(t) which satisfies model assumptions and
equilibrium condition for all times t ≥ 0.

Y(t) = κ(t) for all t implies Y′(t) = κ′(t).

We thus find

1
s
· dI

dt
(1)
=

dY
dt

(E)
=

dκ

dt
(2)
= ϱ

dK
dt

= ϱ I(t)

or in short
1
s
· dI

dt
= ϱ I(t)

This equation contains a function and its derivative.
It must hold for all t ≥ 0.
The unknown in this equation is a function.
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Differential Equation of First Order

An ordinary differential equation (ODE) of first order is an equation
where the unknown is a univariate function and which contains the first
(but not any higher) derivative of that function.

y′ = F(t, y)

Examples:

y′ = a y

y′ + a y = b

y′ + a y = b y2

are ODEs of first order which describe exponential, exponentially
bounded, and logistic growth, resp.
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Remarks

▶ When time t is the independent variable of a function y(t),
then often Newton’s notation is used for its derivatives:

ẏ(t) =
dy
dt

and ÿ(t) =
d2y
dt2

▶ The independent variable is often not given explicitly:

y′ = a y is short for y′(t) = a y(t).

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 5 / 44

Solution of Domar’s Model

Transformation of the differential equation yields

1
I(t)

I′(t) = ϱ s

This equation must hold for all t:

ln(I) =

ln(I) + c2 =

∫ 1
I

dI =
∫ 1

I(t)
I′(t) dt =

∫
ϱ s dt

= ϱ s t + c1= ϱ s t + (c1 − c2)

= ϱ s t + c

Substitution: I = I(t) ⇒ dI = I′(t) dt

Thus we get
I(t) = eϱst · ec = C eϱst (C > 0)

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 6 / 44



General Solution

All solutions of ODE I′ = ϱsI can be written as

I(t) = C eϱst (C > 0)

This representation is called the general solution of the ODE.

We obtain infinitely many solutions!

We can easily verify the correctness of these solutions:

dI
dt

= ϱs · C eϱst = ϱs · I(t)
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Initial Value Problem

In our model investment rate I(t) is known at time t = 0 (i.e., “now”).
So we have two equations:

{
I′(t) = ϱs · I
I(0) = I0

We have to find some function I(t) which satisfies both the ODE and
the initial value.

We have to solve the so called initial value problem.

We obtain the so called particular solution of the initial value problem
by substituting the initial values into the general solution of the ODE.
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Solution of Domar’s Model

We obtain the particular solution of initial value problem
{

I′(t) = ϱs · I
I(0) = I0

by substituting into the general solution:

I0 = I(0) = C eρs0 = C

and thus
I

t

I0

I(t) = I0 eϱst
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Graphical Interpretation

Equation y′ = F(t, y) assigns the slope of a tangent to each point
(t, y). We get a so called vector field.

y

t
y0
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Separation of Variables

Differential equations of the form

y′ = f (t) · g(y)

can be solved by means of separation of variables:

dy
dt

= f (t) · g(y) ⇐⇒ 1
g(y)

dy = f (t) dt

Integration of either side yields:

∫ 1
g(y)

dy =
∫

f (t) dt + c

We thus obtain the solution of the ODE as implicit function.

We have solved the ODE of Domar’s model by separation of variables.
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Example – Separation of Variables

Find the solutions of ODE

y′ + t y2 = 0

Separation of variables:

dy
dt

= −t y2 ⇒ −dy
y2 = t dt

Integration yields

−
∫ dy

y2 =
∫

t dt + c ⇒ 1
y
=

1
2

t2 + c

and thus we obtain the general solution as

y(t) =
2

t2 + 2c
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Example – Initial Value Problem

Compute the solution of the initial value problem

y′ + t y2 = 0, y(0) = 1

Particular solution by substitution:

1 = y(0) =
2

02 + 2c
⇒ c = 1

and thus

y(t) =
2

t2 + 2
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Linear ODE of First Order

A linear differential equation of first order is of form

y′(t) + a(t) y(t) = s(t)

It is called
▶ homogeneous ODE, if s = 0, and
▶ inhomogeneous ODE, if s ̸= 0.

Homogeneous linear ODE of first order can be solved by separation of
variables.
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Example – Homogeneous Linear ODE

Find the general solution of the homogeneous linear ODE

y′ + 3 t2y = 0

Separation of variables:

dy
dt

= −3 t2 y ⇒ 1
y

dy = −3t2 dt ⇒ ln y = −t3 + c

General solution thus is
y(t) = C e−t3
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Inhomogeneous Linear ODE of First Order

The general solution of inhomogeneous linear ODE

y′(t) + a y(t) = s

can be written as

y(t) = yh(t) + yp(t)

where
▶ yh(t) is the general solution of the corresponding homogeneous

equation y′(t) + a y(t) = 0, and
▶ yp(t) is some particular solution of the inhomogeneous equation.

If coefficients a and b are constants we set yp(t) = const.
Then y′p = 0 and yp(t) = s

a .
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Inhomogeneous Linear ODE of First Order

For the case where all coefficients a and b are constants and non-zero
the general solution of

y′(t) + a y(t) = s

is given as

y(t) = C e−at +
s
a

Observe that C e−at is just the solution of the corresponding
homogeneous ODE y′(t) + a y(t) = 0.
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Inhomogeneous Linear ODE of First Order

For the initial value problem

y′(t) + a y(t) = s, y(0) = y0

we obtain the particular solution

y(t) = (y0 − ȳ) e−at + ȳ with ȳ =
s
a

We find this solution by substituting the initial value into the particular
solution.
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Example – Inhomogeneous Linear ODE

Find the solution of the initial value problem

y′ − 3y = 6, y(0) = 1

We find

ȳ =
s
a
=

6
−3

= −2

y(t) = (y0 − ȳ) e−at + ȳ = (1− (−2)) e3t − 2 = 3e3t − 2

The particular solution thus is

y(t) = 3e3t − 2
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Model – Dynamic of Market Price

Assume that demand and supply functions are linear:

qd(t) = α− β p(t) (α, β > 0)
qs(t) = −γ + δ p(t) (γ, δ > 0)

The rate of price change is directly proportional to the difference
(qd − qs):

dp
dt

= j (qd(t)− qs(t)) (j > 0)

How does price p(t) evolve in time?

dp
dt

= j (qd − qs) = j (α− βp− (−γ + δp))

= j (α + γ)− j (β + δ)p

i.e., we obtain the inhomogeneous linear ODE of first order

p′(t) + j (β + δ) p(t) = j (α + γ)
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Model – Dynamic of Market Price

The solution of initial value problem

p′(t) + j (β + δ) p(t) = j (α + γ), p(0) = p0

is
p(t) = (p0 − p̄) e−j(β+δ)t + p̄

with

p̄ =
s
a
=

j(α + γ)

j(β + δ)
=

α + γ

β + δ

Observe that p̄ is just the
price in market equilibrium.

t

p̄

p0

p0

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 21 / 44



Logistic Differential Equation

A logistic differential equation is of form

y′(t)− k y(t) (L− y(t)) = 0

where k, L > 0 and 0 ≤ y(t) ≤ L.

▶ y ≈ 0: y′(t)− k L y(t) ≈ 0 ⇒ y(t) ≈ C ek L t

▶ y ≈ L: y′(t) + k L y(t) ≈ k L2 ⇒ y(t) ≈ L− C e−k L t

t

L

C ek L t

L− C e−k L t
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Logistic Differential Equation

We can find general solution by separation of variables:

y(t) =
L

1 + C e−L k t

All solutions have an inflection point in y = L
2 .

t

L

L
2
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Example – Logistic Differential Equation

A flu epidemic happens in a city with 8100 inhabitants. When the
epidemic has been detected 100 persons have been infected. Twenty
days later 1000 persons have been infected. It is expected that all
inhabitants eventually will be infected.
Give a model for the number of infected persons.

We use a logistic ODE with L = 8100.
Let q(t) denote the number of infected persons,
where q(0) = 100 and q(20) = 1000.

The general solution of this ODE is

q(t) =
8100

1 + C e−8100kt

We have to estimate parameters k and C.
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Example – Logistic Differential Equation

q(0) = 100 ⇒ 8100
1 + C

= 100 ⇒ C = 80

q(20) = 1000 ⇒ 8100
1 + 80 e−8100·20 k = 1000 ⇒ k = 0.00001495

The number of infected persons can be described by means of function

q(t) =
8100

1 + 80 e−0.121 t .
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Differential Equation of Second Order

An ordinary differential equation (ODE) of second order is an
equation where the unknown is a univariate function and which
contains the second (but not any higher) derivative of that function.

y′′ = F(t, y, y′)

We restrict our interest to linear differential equations of second
order with constant coefficients:

y′′(t) + a1 y′(t) + a2 y(t) = s
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Homogeneous Linear ODE of Second Order

We obtain the general solution of the homogeneous linear ODE

y′′(t) + a1 y′(t) + a2 y(t) = 0

by means of the ansatz
y(t) = C eλt

where λ satisfies the characteristic equation

λ2 + a1λ + a2 = 0

This condition immediately follows from

y′′(t) + a1 y′(t) + a2 y(t) = λ2 C eλt + a1 λ C eλt + a2 C eλt

= C eλt(λ2 + a1 λ + a2) = 0
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Characteristic Equation

The characteristic equation

λ2 + a1λ + a2 = 0

has solutions

λ1,2 = − a1

2
±
√

a2
1

4
− a2

We have three cases:

1. a2
1

4 − a2 > 0: two distinct real solutions

2. a2
1

4 − a2 = 0: exactly one real solution

3. a2
1

4 − a2 < 0: two complex (non-real) solutions
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Case: a2
1

4 − a2 > 0

The general solution of the homogeneous ODE is given by

y(t) = C1 eλ1t + C2 eλ2t , with λ1,2 = − a1

2
±
√

a2
1

4
− a2

where C1 and C2 are arbitrary real numbers.
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Example: a2
1

4 − a2 > 0

Compute the general solution of ODE

y′′ − y′ − 2y = 0 .

Characteristic equation
λ2 − λ− 2 = 0

has distinct real solutions

λ1 = −1 and λ2 = 2 .

Thus the general solution of the homogeneous ODE is given by

y(t) = C1e−t + C2e2t .
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Case: a2
1

4 − a2 = 0

The general solution of the homogeneous ODE is given by

y(t) = (C1 + C2 t) eλt , with λ = − a1

2

We can verify the validity of solution t eλt by a simple (but tedious)
straight-forward computation.
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Example: a2
1

4 − a2 = 0

Compute the general solution of ODE

y′′ + 4y′ + 4y = 0 .

Characteristic equation

λ2 + 4λ + 4 = 0

has the unique solution
λ = −2 .

The general solution of the homogeneous ODE is thus given by

y(t) = (C1 + C2t) e−2t .
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Case: a2
1

4 − a2 < 0

In this case root
√

a2
1

4 − a2 is a non-real (imaginary) number.

From the rules for complex numbers one can derive purely real
solutions:

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]

with a = − a1
2 and b =

√∣∣∣ a2
1

4 − a2

∣∣∣

Notice that a is the real part of the solution of the characteristic
equation and b the imaginary part.
Computations with complex numbers however are beyond the scope of
this course.
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Example: a2
1

4 − a2 < 0

Compute the general solution of ODE

y′′ + y′ + y = 0 .

Characteristic equation
λ2 + λ + 1 = 0

does not have real solutions as a2
1

4 − a2 = 1
4 − 1 = − 3

4 < 0.

a = − a1
2 = − 1

2 and b =

√∣∣∣ a2
1

4 − a2

∣∣∣ =
√

3
4 =

√
3

2

The general solution of the homogeneous ODE is thus given by

y(t) = e−
1
2 t
[
C1 cos

(√
3

2 t
)
+ C2 sin

(√
3

2 t
)]

.
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Inhomogeneous Linear ODE of Second Order

We obtain the general solution of the inhomogeneous ODE

y′′(t) + a1 y′(t) + a2 y(t) = s

by mean so (provide that a2 ̸= 0)

y(t) = yh(t) +
s
a2

where yh(t) is the general solution of the corresponding homogeneous
ODE

y′′h (t) + a1 y′h(t) + a2 yh(t) = 0 .
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Example – Inhomogeneous Linear ODE of Second Order

Compute the general solution of ODE

y′′(t) + y′(t)− 2y(t) = −10

Characteristic equation of the homogeneous ODE

λ2 + λ− 2 = 0

has real solutions
λ1 = 1 and λ2 = −2 .

The general solution of the inhomogeneous ODE is thus given by

y(t) = C1 eλ1t + C2 eλ2t +
s
a2

= C1 et + C2 e−2t +
−10
−2

.
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Initial Value Problem

All general solutions of linear ODEs of second order contain two
independent integration constants C1 and C2.

Consequently we need two initial values for the particular solution of the
initial value problem





y′′(t) + a1 y′(t) + a2 y(t) = s
y(t0) = y0

y′(t0) = y′0
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Example – Initial Value Problem

Find the particular solution of initial value problem

y′′(t) + y′(t)− 2y(t) = −10, y(0) = 12, y′(0) = −2 .

Its general solution is given by

y(t) = C1 et + C2 e−2t + 5

y′(t) = C1 et − 2C2 e−2t

Substitution of the initial values yields equations

12 = y(0) = C1 + C2

−2 = y′(0) = C1 − 2C2

with solutions C1 = 4 and C2 = 3.
Thus the particular solution of the initial value problem is given by

y(t) = 4et + 3e−2t + 5 .

Josef Leydold – Foundations of Mathematics – WS 2024/25 17 – Differential Equation – 38 / 44

Fixed Point of an ODE

The inhomogeneous linear ODE

y′′(t) + a1 y′(t) + a2 y(t) = s

has the special constant solution

y(t) = ȳ =
s
a2

(= constant)

Point ȳ is called fixed point, stationary point, or equilibrium point of
the ODE.
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Stable and Unstable Fixed Points

The value of a determines the qualitative behavior of solution curve

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ .

t t t

a < 0 a = 0 a > 0

stable fixed point unstable fixed point
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Asymptotically Stable Fixed Point

If a < 0, then every solution

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ

converges to ȳ. The fixed point ȳ is then asymptotically stable.

t
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Unstable Fixed Point

If a > 0, then every solution

y(t) = eat [C1 cos(bt) + C2 sin(bt)
]
+ ȳ

with initial value y(0) = y0 ̸= ȳ diverges.
Such a fixed point ȳ is called unstable.

t
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Example – Asymptotically Stable Fixed Point

The general solution of
y′′ + y′ + y = 2

is given

y(t) = 2 + e−
1
2 t
[
C1 cos

(√
3

2 t
)
+ C2 sin

(√
3

2 t
)]

Fixed point ȳ = 2 is asymptotically stable as a = − 1
2 < 0.
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Summary

▶ differential equation of first order
▶ ODE
▶ vector field
▶ separation of variables
▶ homogeneous and inhomogeneous linear ODE of first order
▶ logistic ODE
▶ homogeneous and inhomogeneous linear ODE of second order
▶ stable and unstable equilibrium points
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