

Slack Variables	Slack Variables
Maximize $f(x_1, \dots, x_n)$ subject to $g_1(x_1, \dots, x_n) + s_1 = c_1$ \vdots $g_k(x_1, \dots, x_n) + s_k = c_k$ $x_1, \dots, x_n \ge 0$ $s_1, \dots, s_k \ge 0$ (new non-negativity constraint) Lagrange function: $\tilde{\mathcal{L}}(\mathbf{x}, \mathbf{s}, \lambda) = f(x_1, \dots, x_n) + \sum_{i=1}^k \lambda_i (c_i - g_i(x_1, \dots, x_n) - s_i)$	$\begin{split} \tilde{\mathcal{L}}(\mathbf{x},\mathbf{s},\boldsymbol{\lambda}) &= f(x_1,\ldots,x_n) + \sum_{i=1}^k \lambda_i (c_i - g_i(x_1,\ldots,x_n) - s_i) \\ \text{Apply non-negativity conditions:} \\ & \frac{\partial \tilde{\mathcal{L}}}{\partial x_j} \leq 0, x_j \geq 0 \text{and} x_j \frac{\partial \tilde{\mathcal{L}}}{\partial x_j} = 0 \\ & \frac{\partial \tilde{\mathcal{L}}}{\partial s_i} \leq 0, s_i \geq 0 \text{and} s_i \frac{\partial \tilde{\mathcal{L}}}{\partial s_i} = 0 \\ & \frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_i} = 0 (\text{no non-negativity constraint}) \end{split}$
Josef Leydold - Foundations of Mathematics - WS 2024/25 16 - Kuhn Tucker Conditions - 9	/ 22 Josef Leydold – Foundations of Mathematics – WS 2024/25 16 – Kuhn Tucker Conditions – 10 / 22
Elimination of Slack Variables	Elimination of Slack Variables
Because of $\frac{\partial \tilde{\mathcal{L}}}{\partial s_i} = -\lambda_i$ the second line is equivalent to $\lambda_i \ge 0$, $s_i \ge 0$ and $\lambda_i s_i = 0$ Equations $\frac{\partial \tilde{\mathcal{L}}}{\partial \lambda_i} = c_i - g_i(\mathbf{x}) - s_i = 0$ imply $s_i = c_i - g_i(\mathbf{x})$ and consequently the second line is equivalent to $\lambda_i \ge 0$, $c_i - g_i(\mathbf{x}) \ge 0$ and $\lambda_i (c_i - g_i(\mathbf{x})) = 0$.	So we replace $\tilde{\mathcal{L}}$ by Lagrange function $\mathcal{L}(\mathbf{x}, \lambda) = f(x_1, \dots, x_n) + \sum_{i=1}^k \lambda_i (c_i - g_i(x_1, \dots, x_n))$ Observe that $\frac{\partial \mathcal{L}}{\partial x_j} = \frac{\partial \tilde{\mathcal{L}}}{\partial x_j} \text{and} \frac{\partial \mathcal{L}}{\partial \lambda_i} = c_i - g_i(\mathbf{x})$
Therefore there is no need of slack variables any more.	So the second line of the condition for a maximum now reads $\lambda_i \ge 0, \frac{\partial \mathcal{L}}{\partial \lambda_i} \ge 0 \text{and} \lambda_i \frac{\partial \mathcal{L}}{\partial \lambda_i} = 0$
Josef Leydold - Foundations of Mathematics - WS 2024/25 16 - Kuhn Tucker Conditions - 11	
Kuhn-Tucker Conditions $\mathcal{L}(\mathbf{x}, \lambda) = f(x_1, \dots, x_n) + \sum_{i=1}^k \lambda_i (c_i - g_i(x_1, \dots, x_n))$ The Kuhn-Tucker conditions for a (global) maximum are: $\frac{\partial \mathcal{L}}{\partial x_j} \leq 0, x_j \geq 0 \text{and} x_j \frac{\partial \mathcal{L}}{\partial x_j} = 0$ $\frac{\partial \mathcal{L}}{\partial \lambda_i} \geq 0, \lambda_i \geq 0 \text{and} \lambda_i \frac{\partial \mathcal{L}}{\partial \lambda_i} = 0$ Notice that these Kuhn-Tucker conditions are not sufficient. (Analogous to critical points.)	Example – Kuhn-Tucker Conditions Find the maximum of $f(x,y) = -(x-5)^2 - (y-5)^2$ subject to $x^2 + y \le 9, x,y \ge 0$
Josef Leydold – Foundations of Mathematics – WS 2024/25 16 – Kuhn Tucker Conditions – 13	/22 Josef Leydold – Foundations of Mathematics – WS 2024/25 16 – Kuhn Tucker Conditions – 14 / 22
Example – Kuhn-Tucker Conditions	Example – Kuhn-Tucker Conditions
Lagrange function: $\mathcal{L}(x, y; \lambda) = -(x-5)^2 - (y-5)^2 + \lambda(9-x^2-y)$ Kuhn-Tucker Conditions: $(A) \mathcal{L}_x = -2(x-5) - 2\lambda x \leq 0$ $(B) \mathcal{L}_y = -2(y-5) - \lambda \leq 0$ $(C) \mathcal{L}_\lambda = 9 - x^2 - y \geq 0$ $(N) \qquad x, y, \lambda \geq 0$ $(I) x \mathcal{L}_x = -x(2(x-5) + 2\lambda x) = 0$	Express equations $(I)-(III)$ as $(I) x = 0 \text{or} 2(x-5) + 2\lambda x = 0$ $(II) y = 0 \text{or} 2(y-5) + \lambda = 0$ $(III) \lambda = 0 \text{or} 9 - x^2 - y = 0$ We have to compute all 8 combinations and check whether the resulting solutions satisfy inequalities $(A), (B), (C), \text{ and } (N)$. • If $\lambda = 0$ (III, left), then by (I) and (II) there exist four solutions for $(x, y; \lambda)$: (0, 0; 0), (0, 5; 0), (5, 0; 0), and (5, 5; 0). However, none of these points satisfies
(II) $y \mathcal{L}_y = -y(2(y-5)+\lambda) = 0$ (III) $\lambda \mathcal{L}_\lambda = \lambda(9-x^2-y) = 0$	all inequalities (A) , (B) , (C) . Hence $\lambda \neq 0$.

