
Chapter 13

Convex and Concave
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Monotone Functions∗

Function f is called monotonically increasing, if

x1 ≤ x2 ⇒ f (x1) ≤ f (x2)

It is called strictly monotonically increasing, if

x1 < x2 ⇔ f (x1) < f (x2) x1 x2

f (x1)

f (x2)

Function f is called monotonically decreasing, if

x1 ≤ x2 ⇒ f (x1) ≥ f (x2)

It is called strictly monotonically decreasing, if

x1 < x2 ⇔ f (x1) > f (x2) x1 x2

f (x1)

f (x2)
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Monotone Functions∗

For differentiable functions we have

f monotonically increasing ⇔ f ′(x) ≥ 0 for all x ∈ D f

f monotonically decreasing ⇔ f ′(x) ≤ 0 for all x ∈ D f

f strictly monotonically increasing ⇐ f ′(x) > 0 for all x ∈ D f

f strictly monotonically decreasing ⇐ f ′(x) < 0 for all x ∈ D f

Function f : (0, ∞), x 7→ ln(x) is strictly monotonically increasing, as

f ′(x) = (ln(x))′ =
1
x
> 0 for all x > 0
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Locally Monotone Functions∗

A function f can be monotonically increasing in some interval and
decreasing in some other interval.

For continuously differentiable functions (i.e., when f ′(x) is continuous)
we can use the following procedure:

1. Compute first derivative f ′(x).

2. Determine all roots of f ′(x).

3. We thus obtain intervals where f ′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′(xi).
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Example – Locally Monotone Functions∗

In which region is function f (x) = 2 x3 − 12 x2 + 18 x− 1
monotonically increasing?

We have to solve inequality f ′(x) ≥ 0:

1. f ′(x) = 6 x2 − 24 x + 18

2. Roots: x2 − 4 x + 3 = 0 ⇒ x1 = 1, x2 = 3

3. Obtain 3 intervals: (−∞, 1], [1, 3], and [3, ∞)

4. Sign of f ′(x) at appropriate points in each interval:
f ′(0) = 3 > 0, f ′(2) = −1 < 0, and f ′(4) = 3 > 0.

5. f ′(x) cannot change sign in each interval:
f ′(x) ≥ 0 in (−∞, 1] and [3, ∞).

Function f (x) is monotonically increasing in (−∞, 1] and in [3, ∞).
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Monotone and Inverse Function

If f is strictly monotonically increasing, then

x1 < x2 ⇔ f (x1) < f (x2)

immediately implies

x1 ̸= x2 ⇔ f (x1) ̸= f (x2)

That is, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing),
then f is invertible.
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Convex Set

A set D ⊆ Rn is called convex, if for any two points x, y ∈ D the
straight line segment between these points also belongs to D, i.e.,

(1− h) x + h y ∈ D for all h ∈ [0, 1], and x, y ∈ D .

convex:

not convex:
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Intersection of Convex Sets

Let S1, . . . , Sk be convex subsets of Rn. Then their intersection
S1 ∩ . . . ∩ Sk is also convex.

The union of convex sets need not be convex.
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Example – Half-Space

Let p ∈ Rn and m ∈ R be fixed, p ̸= 0. Then

H = {x ∈ Rn : pT · x = m}

is a so called hyper-plane which partitions the Rn into two half-spaces

H+ = {x ∈ Rn : pT · x ≥ m} ,
H− = {x ∈ Rn : pT · x ≤ m} .

Sets H, H+ and H− are convex.

Let x be a vector of goods, p the vector of prices and m the budget.
Then the budget set is convex.

{x ∈ Rn : pT · x ≤ m, x ≥ 0}
= {x : pT · x ≤ m} ∩ {x : x1 ≥ 0} ∩ . . . ∩ {x : xn ≥ 0}

Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 9 / 45



Convex and Concave Functions

Function f is called convex in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) ≤ (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D and all h ∈ [0, 1]. It is called concave, if

f ((1− h) x1 + h x2) ≥ (1− h) f (x1) + h f (x2)

x1 x2 x1 x2

convex concave
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Concave Function∗

f
(
(1− h) x1 + h x2

)
≥ (1− h) f (x1) + h f (x2)

x1 x2
(1− h) x1 + h x2

f
(
(1− h) x1 + h x2

)

(1− h) f (x1) + h f (x2)

Secant is below the graph of function f .
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Strictly Convex and Concave Functions

Function f is strictly convex in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) < (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D with x1 ̸= x2 and all h ∈ (0, 1).

Function f is strictly concave in domain D ⊆ Rn, if D is convex and

f ((1− h) x1 + h x2) > (1− h) f (x1) + h f (x2)

for all x1, x2 ∈ D with x1 ̸= x2 and all h ∈ (0, 1).
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Example – Linear Function

Let a ∈ Rn be fixed.
Then f (x) = aT · x is a linear map and we find:

f ((1− h) x1 + h x2) = aT · ((1− h) x1 + h x2)

= (1− h) aT · x1 + h aT · x2

= (1− h) f (x1) + h f (x2)

That is, every linear function is both concave and convex.

However, a linear function is neither strictly concave nor strictly convex,
as the inequality is never strict.
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Example – Quadratic Univariate Function

Function f (x) = x2 is strictly convex :

f ((1− h) x + h y)−
[
(1− h) f (x) + h f (y)

]

= ((1− h) x + h y)2 −
[
(1− h) x2 + h y2]

= (1− h)2 x2 + 2(1− h)h xy + h2 y2 − (1− h) x2 − h y2

= −h(1− h) x2 + 2(1− h)h xy− h(1− h) y2

= −h(1− h) (x− y)2

< 0 for x ̸= y and 0 < h < 1.

Thus
f ((1− h) x + h y) < (1− h) f (x) + h f (y)

for all x ̸= y and 0 < h < 1,
i.e., f (x) = x2 is strictly convex, as claimed.

Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 14 / 45



Properties

▶ If f (x) is (strictly) convex, then − f (x) is (strictly) concave
(and vice versa).

▶ If f1(x), . . . , fk(x) are convex (concave) functions and
α1, . . . , αk > 0, then

g(x) = α1 f1(x) + · · ·+ αk fk(x)

is also convex (concave).

▶ If (at least) one of the functions fi(x) is strictly convex (strictly
concave), then g(x) is strictly convex (strictly concave).
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Properties

For a differentiable functions the following holds:
▶ Function f is concave if and only if

f (x)− f (x0) ≤ ∇ f (x0) · (x− x0)
x0

i.e., the function graph is always below the tangent.

▶ Function f is strictly concave if and only if

f (x)− f (x0) < ∇ f (x0) · (x− x0) for all x ̸= x0

▶ Function f is convex if and only if

f (x)− f (x0) ≥ ∇ f (x0) · (x− x0)

x0
(Analogous for strictly convex functions.)
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Univariate Functions∗

For two times differentiable functions we have

f convex ⇔ f ′′(x) ≥ 0 for all x ∈ D f

f concave ⇔ f ′′(x) ≤ 0 for all x ∈ D f

Derivative f ′(x) is
monotonically decreasing,

thus f ′′(x) ≤ 0.
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Univariate Functions∗

For two times differentiable functions we have

f strictly convex ⇐ f ′′(x) > 0 for all x ∈ D f

f strictly concave ⇐ f ′′(x) < 0 for all x ∈ D f

Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 18 / 45



Example – Convex Function∗

Exponential function:

f (x) = ex

f ′(x) = ex

f ′′(x) = ex > 0 for all x ∈ R

exp(x) is (strictly) convex.

1

1

e
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Example – Concave Function∗

Logarithm function: (x > 0)

f (x) = ln(x)
f ′(x) = 1

x

f ′′(x) = − 1
x2 < 0 for all x > 0

ln(x) is (strictly) concave.

1

1

e
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Locally Convex Functions∗

A function f can be convex in some interval and concave in some other
interval.

For two times continuously differentiable functions (i.e., when f ′′(x) is
continuous) we can use the following procedure:

1. Compute second derivative f ′′(x).

2. Determine all roots of f ′′(x).

3. We thus obtain intervals where f ′′(x) does not change sign.

4. Select appropriate points xi in each interval and determine the
sign of f ′′(xi).
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Locally Concave Function∗

In which region is f (x) = 2 x3 − 12 x2 + 18 x− 1 concave?

We have to solve inequality f ′′(x) ≤ 0.

1. f ′′(x) = 12 x− 24

2. Roots: 12 x− 24 = 0 ⇒ x = 2

3. Obtain 2 intervals: (−∞, 2] and [2, ∞)

4. Sign of f ′′(x) at appropriate points in each interval:
f ′′(0) = −24 < 0 and f ′′(4) = 24 > 0.

5. f ′′(x) cannot change sign in each interval: f ′′(x) ≤ 0 in (−∞, 2]

Function f (x) is concave in (−∞, 2].
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Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if
every restriction of its domain to a straight line results in a convex
univariate function. That is:

Function f : D ⊂ Rn → R is convex

if and only if

g(t) = f (x0 + t · h) is convex

for all x0 ∈ D and
all non-zero h ∈ Rn.

hx0
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Quadratic Form

Let A be a symmetric matrix
and qA(x) = xTAx be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its
eigenvectors, then A becomes a diagonal matrix with the eigenvalues
of A as its elements:

qA(x) = λ1x2
1 + λ2x2

2 + · · ·+ λnx2
n .

▶ It is convex if all eigenvalues λi ≥ 0
as it is the sum of convex functions.

▶ It is concave if all λi ≤ 0
as it is the negative of a convex function.

▶ It is neither convex nor concave if we have eigenvalues with
λi > 0 and λi < 0.
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Quadratic Form

We find for a quadratic form qA:

▶ strictly convex ⇔ positive definite

▶ convex ⇔ positive semidefinite

▶ strictly concave ⇔ negative definite

▶ concave ⇔ negative semidefinite

▶ neither ⇔ indefinite

We can determine the definiteness of A by means of
▶ the eigenvalues of A, or
▶ the (leading) principle minors of A.
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Example – Quadratic Form

Let A =




2 1 0
1 3 −1
0 −1 2


. Leading principle minors:

A1 = 2 > 0

A2 =

∣∣∣∣∣
2 1
1 3

∣∣∣∣∣ = 5 > 0

A3 = |A| =

∣∣∣∣∣∣∣

2 1 0
1 3 −1
0 −1 2

∣∣∣∣∣∣∣
= 8 > 0

A is thus positive definite.
Quadratic form qA is strictly convex.
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Example – Quadratic Form

Let A =



−1 0 1
0 −4 2
1 2 −2


. Principle Minors:

A1 = −1 A2 = −4 A3 = −2

A1,2 =

∣∣∣∣∣
−1 0
0 −4

∣∣∣∣∣ = 4 A1,3 =

∣∣∣∣∣
−1 1
1 −2

∣∣∣∣∣ = 1 A2,3 =

∣∣∣∣∣
−4 2
2 −2

∣∣∣∣∣ = 4

A1,2,3 =

∣∣∣∣∣∣∣

−1 0 1
0 −4 2
1 2 −2

∣∣∣∣∣∣∣
= 0

Ai ≤ 0
Ai,j ≥ 0
A1,2,3 ≤ 0

A is thus negative semidefinite.
Quadratic form qA is concave (but not strictly concave).
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Concavity of Differentiable Functions

Le f : D ⊆ Rn → R with Taylor series expansion

f (x0 + h) = f (x0) +∇ f (x0) · h + 1
2 hT ·H f (x0) · h +O(∥h∥3)

Hessian matrix H f (x0) determines the concavity or convexity of f
around expansion point x0.

▶ H f (x0) positive definite ⇒ f strictly convex around x0

▶ H f (x0) negative definite ⇒ f strictly concave around x0

▶ H f (x) positive semidefinite for all x ∈ D ⇔ f convex in D
▶ H f (x) negative semidefinite for all x ∈ D ⇔ f concave in D
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Recipe – Strictly Convex

1. Compute Hessian matrix

H f (x) =




fx1x1(x) fx1x2(x) · · · fx1xn(x)
fx2x1(x) fx2x2(x) · · · fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) · · · fxnxn(x)




2. Compute all leading principle minors Hi.

3.
▶ f strictly convex ⇔ all Hk > 0 for (almost) all x ∈ D

▶ f strictly concave ⇔ all (−1)k Hk > 0 for (almost) all x ∈ D

[ (−1)k Hk > 0 implies: H1, H3, . . . < 0 and H2, H4, . . . > 0 ]

4. Otherwise f is neither strictly convex nor strictly concave.
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Recipe – Convex

1. Compute Hessian matrix

H f (x) =




fx1x1(x) fx1x2(x) · · · fx1xn(x)
fx2x1(x) fx2x2(x) · · · fx2xn(x)

...
...

. . .
...

fxnx1(x) fxnx2(x) · · · fxnxn(x)




2. Compute all principle minors Hi1,...,ik .
(Only required if det(H f ) = 0, see below)

3. ▶ f convex ⇔ all Hi1,...,ik ≥ 0 for all x ∈ D.

▶ f concave ⇔ all (−1)k Hi1,...,ik ≥ 0 for all x ∈ D.

4. Otherwise f is neither convex nor concave.
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Recipe – Convex II

Computation of all principle minors can be avoided if det(H f ) ̸= 0.
Then a function is either strictly convex/concave (and thus
convex/concave) or neither convex nor concave.

In particular we have the following recipe:

1. Compute Hessian matrix H f (x).

2. Compute all leading principle minors Hi.

3. Check if det(H f ) ̸= 0.

4. Check for strict convexity or concavity.

5. If det(H f ) ̸= 0 and f is neither strictly convex nor concave, then f
is neither convex nor concave, either.
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Example – Strict Convexity

Is function f (strictly) concave or convex?

f (x, y) = x4 + x2 − 2 x y + y2

1. Hessian matrix: H f (x) =

(
12 x2 + 2 −2
−2 2

)

2. Leading principle minors:
H1 = 12 x2 + 2 > 0
H2 = |H f (x)| = 24 x2 > 0 for all x ̸= 0.

3. All leading principle minors > 0 for almost all x
⇒ f is strictly convex. (and thus convex, too)
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Example – Cobb-Douglas Function

Let f (x, y) = xαyβ with α, β ≥ 0 and α + β ≤ 1,
and D = {(x, y) : x, y ≥ 0}.
Hessian matrix at x:

H f (x) =

(
α(α− 1) xα−2yβ αβ xα−1yβ−1

αβ xα−1yβ−1 β(β− 1) xαyβ−2

)

Principle Minors:

H1 = α︸︷︷︸
≥0

(α− 1)︸ ︷︷ ︸
≤0

xα−2yβ

︸ ︷︷ ︸
≥0

≤ 0

H2 = β︸︷︷︸
≥0

(β− 1)︸ ︷︷ ︸
≤0

xαyβ−2
︸ ︷︷ ︸
≥0

≤ 0
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Example – Cobb-Douglas Function

H1,2 = |H f (x)|
= α(α− 1) xα−2yβ · β(β− 1) xαyβ−2 − (αβ xα−1yβ−1)2

= α(α− 1) β(β− 1) x2α−2y2β−2 − α2β2 x2α−2y2β−2

= αβ[(α− 1)(β− 1)− αβ]x2α−2y2β−2

= αβ︸︷︷︸
≥0

(1− α− β)︸ ︷︷ ︸
≥0

x2α−2y2β−2
︸ ︷︷ ︸

≥0

≥ 0

H1 ≤ 0 and H2 ≤ 0 , and H1,2 ≥ 0 for all (x, y) ∈ D.

f (x, y) thus is concave in D.

For 0 < α, β < 1 and α + β < 1 we even find:
H1 = H1 < 0 and H2 = |H f (x)| > 0 for almost all (x, y) ∈ D.

f (x, y) is then strictly concave.
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Lower Level Sets of Convex Functions

Assume that f is convex.
Then the lower level sets of f

{x ∈ D f : f (x) ≤ c}
are convex.

x1

x2
y

Let x1, x2 ∈ {x ∈ D f : f (x) ≤ c},
i.e., f (x1), f (x2) ≤ c.

Then for y = (1− h)x1 + hx2
where h ∈ [0, 1] we find

f (y) = f ((1− h)x1 + hx2)

≤ (1− h) f (x1) + h f (x2)

≤ (1− h)c + hc = c

That is, y ∈ {x ∈ D f : f (x) ≤ c}, too.
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Upper Level Sets of Concave Functions

Assume that f is concave.
Then the upper level sets of f

{x ∈ D f : f (x) ≥ c}
are convex.

c
c

upper level set lower level set
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Extremum and Monotone Transformation

Let T : R→ R be a strictly monotonically increasing function.

If x∗ is a maximum of f , then x∗ is also a maximum of T ◦ f .

As x∗ is a maximum of f , we have

f (x∗) ≥ f (x) for all x.

As T is strictly monotonically increasing,we have

T(x1) > T(x2) falls x1 > x2.

Thus we find

(T ◦ f )(x∗) = T( f (x∗)) > T( f (x)) = (T ◦ f )(x) for all x,

i.e., x∗ is a maximum of T ◦ f .

As T is one-to-one we also get the converse statement:
If x∗ is a maximum of T ◦ f , then it also is a maximum of f .
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Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T preserves the
extrema of f .

Transformation T also preserves the level sets of f :

−1
−4
−9

−1
−4
−9

e−1
e−4

e−9

e−1
e−4

e−9

f (x, y) = −x2 − y2 T( f (x, y)) = exp(−x2 − y2)
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Quasi-Convex and Quasi-Concave

Function f is called quasi-convex in D ⊆ Rn, if D is convex and every
lower level set {x ∈ D f : f (x) ≤ c} is convex.

Function f is called quasi-concave in D ⊆ Rn, if D is convex and
every upper level set {x ∈ D f : f (x) ≥ c} is convex.
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Convex and Quasi-Convex

Every concave (convex) function also is quasi-concave (and
quasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let T be a strictly monotonically increasing function.
If function f (x) is concave (convex), then T ◦ f is quasi-concave (and
quasi-convex, resp.).

Function g(x, y) = e−x2−y2
is quasi-concave, as f (x, y) = −x2 − y2 is

concave and T(x) = ex is strictly monotonically increasing.

However, g = T ◦ f is not concave.
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A Weaker Condition

The notion of quasi-convex is weaker than that of convex in the sense
that every convex function also is quasi-convex but not vice versa.
There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation
that a couple of propositions still hold if “convex” is replaced by
“quasi-convex”.

In this way we get a generalization of a theorem, where a stronger
condition is replaced by a weaker one.
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Quasi-Convex and Quasi-Concave II

▶ Function f is quasi-convex if and only if

f ((1− h)x1 + hx2) ≤ max{ f (x1), f (x2)}
for all x1, x2 and h ∈ [0, 1].

▶ Function f is quasi-concave if and only if

f ((1− h)x1 + hx2) ≥ min{ f (x1), f (x2)}
for all x1, x2 and h ∈ [0, 1].

x2 x1 x1 x2

quasi-convex quasi-concave
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Strictly Quasi-Convex and Quasi-Concave

▶ Function f is called strictly quasi-convex if

f ((1− h)x1 + hx2) < max{ f (x1), f (x2)}
for all x1, x2, with x1 ̸= x2, and h ∈ (0, 1).

▶ Function f is called strictly quasi-concave if

f ((1− h)x1 + hx2) > min{ f (x1), f (x2)}
for all x1, x2, with x1 ̸= x2, and h ∈ (0, 1).
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Quasi-convex and Quasi-Concave III

For a differentiable function f we find:

▶ Function f is quasi-convex if and only if

f (x) ≤ f (x0) ⇒ ∇ f (x0) · (x− x0) ≤ 0

▶ Function f is quasi-concave if and only if

f (x) ≥ f (x0) ⇒ ∇ f (x0) · (x− x0) ≥ 0
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Summary

▶ monotone function
▶ convex set
▶ convex and concave function
▶ convexity and definiteness of quadratic form
▶ minors of Hessian matrix
▶ quasi-convex and quasi-concave function
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