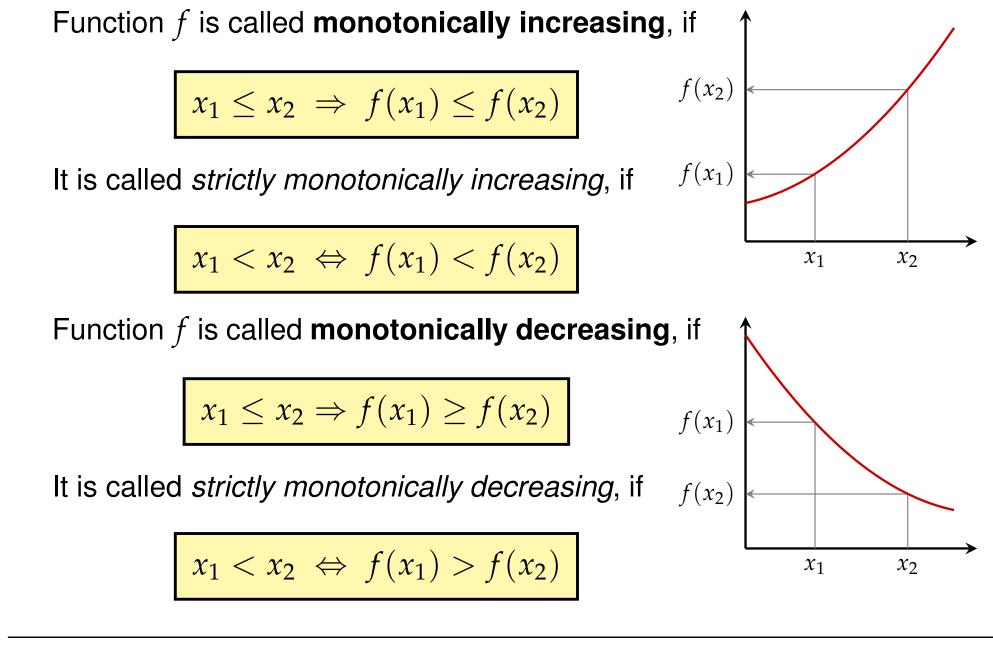
Chapter 13

Convex and Concave

Monotone Functions*



Monotone Functions*

For differentiable functions we have

$$f$$
 monotonically increasing $\Leftrightarrow f'(x) \ge 0$ for all $x \in D_f$
 f monotonically decreasing $\Leftrightarrow f'(x) \le 0$ for all $x \in D_f$

f strictly monotonically increasing $\Leftrightarrow f'(x) > 0$ for all $x \in D_f$ f strictly monotonically decreasing $\Leftrightarrow f'(x) < 0$ for all $x \in D_f$

Function $f: (0, \infty), x \mapsto \ln(x)$ is strictly monotonically increasing, as

$$f'(x) = (\ln(x))' = \frac{1}{x} > 0$$
 for all $x > 0$

Locally Monotone Functions*

A function f can be monotonically increasing in some interval and decreasing in some other interval.

For *continuously* differentiable functions (i.e., when f'(x) is continuous) we can use the following procedure:

- **1.** Compute first derivative f'(x).
- **2.** Determine all roots of f'(x).
- **3.** We thus obtain intervals where f'(x) does not change sign.
- **4.** Select appropriate points x_i in each interval and determine the sign of $f'(x_i)$.

Example – Locally Monotone Functions*

In which region is function $f(x) = 2x^3 - 12x^2 + 18x - 1$ monotonically increasing?

We have to solve inequality $f'(x) \ge 0$:

- **1.** $f'(x) = 6x^2 24x + 18$
- **2.** Roots: $x^2 4x + 3 = 0 \Rightarrow x_1 = 1, x_2 = 3$
- **3.** Obtain 3 intervals: $(-\infty, 1], [1, 3], \text{ and } [3, \infty)$
- 4. Sign of f'(x) at appropriate points in each interval: f'(0) = 3 > 0, f'(2) = -1 < 0, and f'(4) = 3 > 0.
- 5. f'(x) cannot change sign in each interval: $f'(x) \ge 0$ in $(-\infty, 1]$ and $[3, \infty)$.

Function f(x) is monotonically increasing in $(-\infty, 1]$ and in $[3, \infty)$.

Monotone and Inverse Function

If f is strictly monotonically increasing, then

$$x_1 < x_2 \iff f(x_1) < f(x_2)$$

immediately implies

$$x_1 \neq x_2 \iff f(x_1) \neq f(x_2)$$

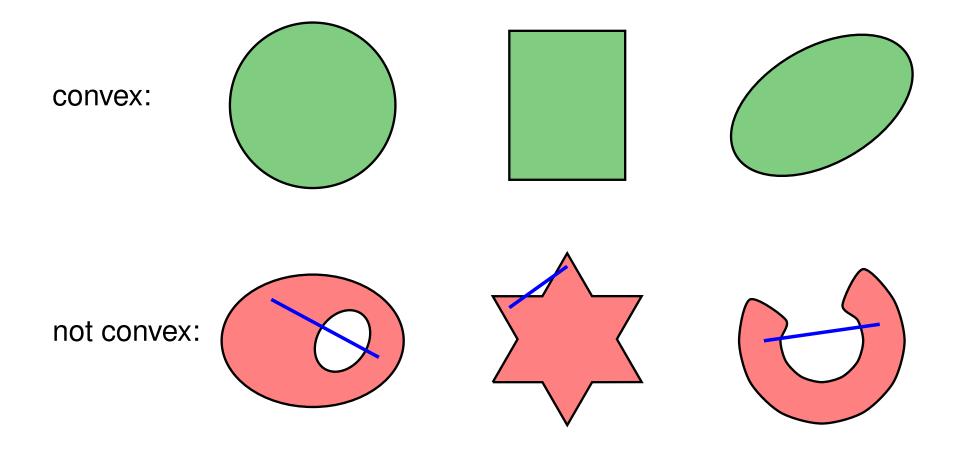
That is, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing), then f is **invertible**.

Convex Set

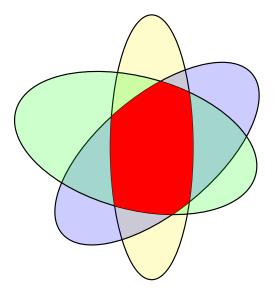
A set $D \subseteq \mathbb{R}^n$ is called **convex**, if for any two points $\mathbf{x}, \mathbf{y} \in D$ the straight line segment between these points also belongs to D, i.e.,

 $(1-h) \mathbf{x} + h \mathbf{y} \in D$ for all $h \in [0,1]$, and $\mathbf{x}, \mathbf{y} \in D$.



Intersection of Convex Sets

Let S_1, \ldots, S_k be convex subsets of \mathbb{R}^n . Then their *intersection* $S_1 \cap \ldots \cap S_k$ is also convex.



The union of convex sets need not be convex.

Example – Half-Space

Let $\mathbf{p} \in \mathbb{R}^n$ and $m \in \mathbb{R}$ be fixed, $\mathbf{p} \neq 0$. Then

$$H = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} = m \}$$

is a so called **hyper-plane** which partitions the \mathbb{R}^n into two **half-spaces**

$$H_{+} = \{ \mathbf{x} \in \mathbb{R}^{n} : \mathbf{p}^{\mathsf{T}} \cdot \mathbf{x} \ge m \} ,$$

$$H_{-} = \{ \mathbf{x} \in \mathbb{R}^{n} : \mathbf{p}^{\mathsf{T}} \cdot \mathbf{x} \le m \} .$$

Sets H, H_+ and H_- are convex.

Let x be a vector of goods, p the vector of prices and m the budget. Then the budget set is convex.

$$\{\mathbf{x} \in \mathbb{R}^n \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} \le m, \mathbf{x} \ge 0\}$$

= $\{\mathbf{x} \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} \le m\} \cap \{\mathbf{x} \colon x_1 \ge 0\} \cap \ldots \cap \{\mathbf{x} \colon x_n \ge 0\}$

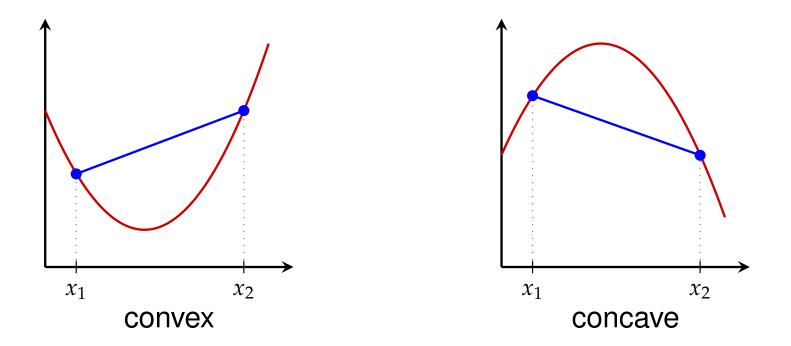
Convex and Concave Functions

Function *f* is called **convex** in domain $D \subseteq \mathbb{R}^n$, if *D* is *convex* and

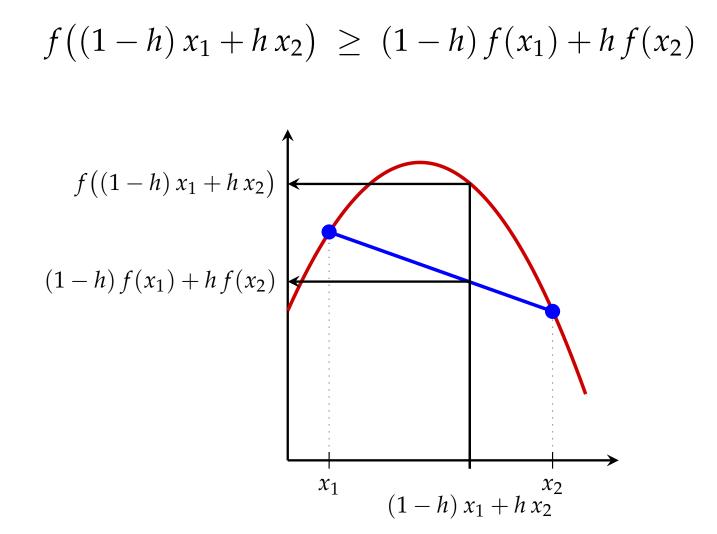
$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \le (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in D$ and all $h \in [0, 1]$. It is called **concave**, if

 $f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \ge (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$



Concave Function*



Secant is below the graph of function f.

Strictly Convex and Concave Functions

Function *f* is **strictly convex** in domain $D \subseteq \mathbb{R}^n$, if *D* is *convex* and

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) < (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in D$ with $\mathbf{x}_1 \neq \mathbf{x}_2$ and all $h \in (0, 1)$.

Function *f* is **strictly concave** in domain $D \subseteq \mathbb{R}^n$, if *D* is *convex* and

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) > (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in D$ with $\mathbf{x}_1 \neq \mathbf{x}_2$ and all $h \in (0, 1)$.

Example – Linear Function

Let $\mathbf{a} \in \mathbb{R}^n$ be fixed. Then $f(\mathbf{x}) = \mathbf{a}^T \cdot \mathbf{x}$ is a linear map and we find: $f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) = \mathbf{a}^T \cdot ((1-h)\mathbf{x}_1 + h\mathbf{x}_2)$ $= (1-h)\mathbf{a}^T \cdot \mathbf{x}_1 + h\mathbf{a}^T \cdot \mathbf{x}_2$ $= (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$

That is, every *linear function* is both *concave and convex*.

However, a linear function is neither strictly concave nor strictly convex, as the inequality is never strict.

Example – Quadratic Univariate Function

Function
$$f(x) = x^2$$
 is strictly convex:

$$\begin{aligned} f((1-h)x + hy) - \left[(1-h)f(x) + hf(y)\right] \\ &= ((1-h)x + hy)^2 - \left[(1-h)x^2 + hy^2\right] \\ &= (1-h)^2 x^2 + 2(1-h)hxy + h^2 y^2 - (1-h)x^2 - hy^2 \\ &= -h(1-h)x^2 + 2(1-h)hxy - h(1-h)y^2 \\ &= -h(1-h)(x-y)^2 \\ &< 0 \quad \text{for } x \neq y \text{ and } 0 < h < 1. \end{aligned}$$

Thus

$$f((1-h)x + hy) < (1-h)f(x) + hf(y)$$

for all $x \neq y$ and 0 < h < 1, i.e., $f(x) = x^2$ is strictly convex, as claimed.

Properties

- ► If f(x) is (strictly) convex, then -f(x) is (strictly) concave (and vice versa).
- If $f_1(\mathbf{x}), \ldots, f_k(\mathbf{x})$ are *convex* (concave) functions and $\alpha_1, \ldots, \alpha_k > 0$, then

$$g(\mathbf{x}) = \alpha_1 f_1(\mathbf{x}) + \cdots + \alpha_k f_k(\mathbf{x})$$

is also *convex* (concave).

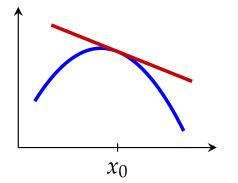
► If (at least) one of the functions $f_i(x)$ is *strictly convex* (strictly concave), then g(x) is strictly convex (strictly concave).

Properties

For a differentiable functions the following holds:

► Function *f* is **concave** if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) \le \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$



i.e., the function graph is always below the tangent.

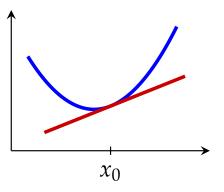
► Function *f* is **strictly concave** if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) < \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \quad \text{for all } \mathbf{x} \neq \mathbf{x}_0$$

Function f is convex if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) \ge \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

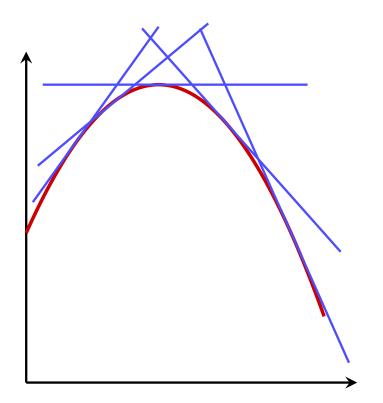
(Analogous for strictly convex functions.)



Univariate Functions*

For two times differentiable functions we have

$$\begin{array}{ll} f \ {\rm convex} & \Leftrightarrow & f''(x) \geq 0 & \ {\rm for \ all} \ x \in D_f \\ f \ {\rm concave} & \Leftrightarrow & f''(x) \leq 0 & \ {\rm for \ all} \ x \in D_f \end{array}$$



Derivative f'(x) is monotonically decreasing,

thus $f''(x) \leq 0$.

Univariate Functions*

For two times differentiable functions we have

f strictly convex $\Leftarrow f''(x) > 0$ for all $x \in D_f$ f strictly concave $\Leftarrow f''(x) < 0$ for all $x \in D_f$

Example – Convex Function*

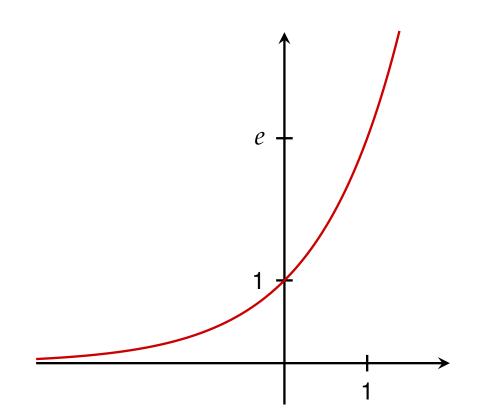
Exponential function:

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f''(x) = e^{x} > 0 \text{ for all } x \in \mathbb{R}$$

exp(x) is (strictly) convex.



Example – Concave Function*

Logarithm function: (x > 0) $f(x) = \ln(x)$ $f'(x) = \frac{1}{x}$ $f''(x) = -\frac{1}{x^2} < 0$ for all x > 0 $\ln(x)$ is (strictly) concave.

Locally Convex Functions*

A function f can be convex in some interval and concave in some other interval.

For two times *continuously* differentiable functions (i.e., when f''(x) is continuous) we can use the following procedure:

- **1.** Compute second derivative f''(x).
- **2.** Determine all roots of f''(x).
- **3.** We thus obtain intervals where f''(x) does not change sign.
- **4.** Select appropriate points x_i in each interval and determine the sign of $f''(x_i)$.

Locally Concave Function*

In which region is $f(x) = 2 x^3 - 12 x^2 + 18 x - 1$ concave?

We have to solve inequality $f''(x) \leq 0$.

1.
$$f''(x) = 12x - 24$$

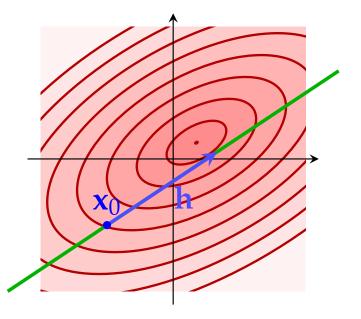
- **2.** Roots: $12x 24 = 0 \implies x = 2$
- **3.** Obtain 2 intervals: $(-\infty, 2]$ and $[2, \infty)$
- 4. Sign of f''(x) at appropriate points in each interval: f''(0) = -24 < 0 and f''(4) = 24 > 0.

5. f''(x) cannot change sign in each interval: $f''(x) \le 0$ in $(-\infty, 2]$ Function f(x) is concave in $(-\infty, 2]$.

Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if every restriction of its domain to a straight line results in a convex univariate function. That is:

Function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is convex if and only if $g(t) = f(\mathbf{x}_0 + t \cdot \mathbf{h})$ is convex for all $\mathbf{x}_0 \in D$ and all non-zero $\mathbf{h} \in \mathbb{R}^n$.



Quadratic Form

Let ${\bf A}$ be a symmetric matrix

and $q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its eigenvectors, then A becomes a diagonal matrix with the eigenvalues of A as its elements:

$$q_{\mathbf{A}}(\mathbf{x}) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2 .$$

- lt is convex if all eigenvalues $\lambda_i \ge 0$ as it is the sum of convex functions.
- It is concave if all $\lambda_i \leq 0$ as it is the negative of a convex function.
- ► It is neither convex nor concave if we have eigenvalues with $\lambda_i > 0$ and $\lambda_i < 0$.

Quadratic Form

We find for a quadratic form $q_{\mathbf{A}}$:

- ► strictly convex ⇔ positive definite
- ► convex ⇔ positive semidefinite
- ► strictly concave ⇔ negative definite
- ► concave ⇔ negative semidefinite
- ▶ neither ⇔ indefinite

We can determine the definiteness of ${\bf A}$ by means of

- ► the eigenvalues of A, or
- ► the (leading) principle minors of A.

Example – Quadratic Form

Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
. Leading principle minors:
 $A_1 = 2 > 0$
 $A_2 = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5 > 0$
 $A_3 = |\mathbf{A}| = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8 > 0$

A is thus positive definite. Quadratic form q_A is *strictly convex*.

Example – Quadratic Form

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{pmatrix}$$
. Principle Minors:

$$A_{1} = -1 \qquad A_{2} = -4 \qquad A_{3} = -2$$

$$A_{1,2} = \begin{vmatrix} -1 & 0 \\ 0 & -4 \end{vmatrix} = 4 \qquad A_{1,3} = \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = 1 \qquad A_{2,3} = \begin{vmatrix} -4 & 2 \\ 2 & -2 \end{vmatrix} = 4$$

$$A_{1,2,3} = \begin{vmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{vmatrix} = 0 \qquad A_{i,j} \leq 0$$

$$A_{1,2,3} \leq 0$$

A is thus negative semidefinite.

Quadratic form q_A is *concave* (but not strictly concave).

Concavity of Differentiable Functions

Le $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ with Taylor series expansion

 $f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathsf{T}} \cdot \mathbf{H}_f(\mathbf{x}_0) \cdot \mathbf{h} + \mathcal{O}(\|\mathbf{h}\|^3)$

Hessian matrix $\mathbf{H}_{f}(\mathbf{x}_{0})$ determines the concavity or convexity of f around expansion point \mathbf{x}_{0} .

► H_f(x₀) positive definite ⇒ f strictly convex around x₀
 ► H_f(x₀) negative definite ⇒ f strictly concave around x₀

► H_f(x) positive semidefinite for all x ∈ D ⇔ f convex in D
► H_f(x) negative semidefinite for all x ∈ D ⇔ f concave in D

Recipe – Strictly Convex

1. Compute Hessian matrix

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{pmatrix}$$

2. Compute all *leading principle minors* H_i .

3.

f strictly convex ⇔ all *H_k* > 0 for (almost) **all** *x* ∈ *D f strictly concave* ⇔ all (−1)^k*H_k* > 0 for (almost) **all** *x* ∈ *D*

 $[(-1)^k H_k > 0 \text{ implies: } H_1, H_3, \ldots < 0 \text{ and } H_2, H_4, \ldots > 0]$

4. Otherwise *f* is *neither* **strictly** convex *nor* strictly concave.

Recipe – Convex

1. Compute Hessian matrix

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{pmatrix}$$

2. Compute all *principle minors* $H_{i_1,...,i_k}$. (Only required if det(\mathbf{H}_f) = 0, see below)

3. ► *f* convex
$$\Leftrightarrow$$
 all $H_{i_1,...,i_k} \ge 0$ for all $\mathbf{x} \in D$.
► *f* concave \Leftrightarrow all $(-1)^k H_{i_1,...,i_k} \ge 0$ for all $\mathbf{x} \in D$.

4. Otherwise f is *neither* convex *nor* concave.

Recipe – Convex II

Computation of *all* principle minors can be avoided if $det(\mathbf{H}_f) \neq 0$. Then a function is either strictly convex/concave (and thus convex/concave) or neither convex nor concave.

In particular we have the following recipe:

- **1.** Compute Hessian matrix $\mathbf{H}_{f}(\mathbf{x})$.
- **2.** Compute all *leading principle minors* H_i .
- **3.** Check if $det(\mathbf{H}_f) \neq 0$.
- 4. Check for strict convexity or concavity.
- **5.** If $det(\mathbf{H}_f) \neq 0$ and f is neither strictly convex nor concave, then f is neither convex nor concave, either.

Example – Strict Convexity

Is function f (strictly) concave or convex?

$$f(x,y) = x^4 + x^2 - 2xy + y^2$$

1. Hessian matrix:
$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} 12 \, x^{2} + 2 & -2 \\ -2 & 2 \end{pmatrix}$$

2. Leading principle minors: $H_1 = 12 x^2 + 2$ > 0 $H_2 = |\mathbf{H}_f(\mathbf{x})| = 24 x^2$ > 0 for all $x \neq 0$.

3. All leading principle minors > 0 for almost all \mathbf{x} $\Rightarrow f$ is *strictly convex*. (and thus convex, too)

Example – Cobb-Douglas Function

Let
$$f(x, y) = x^{\alpha}y^{\beta}$$
 with $\alpha, \beta \ge 0$ and $\alpha + \beta \le 1$,
and $D = \{(x, y) : x, y \ge 0\}.$

Hessian matrix at **x**:

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} \alpha(\alpha-1) \, x^{\alpha-2} y^{\beta} & \alpha\beta \, x^{\alpha-1} y^{\beta-1} \\ \alpha\beta \, x^{\alpha-1} y^{\beta-1} & \beta(\beta-1) \, x^{\alpha} y^{\beta-2} \end{pmatrix}$$

Principle Minors:

$$H_{1} = \underbrace{\alpha}_{\geq 0} \underbrace{(\alpha - 1)}_{\leq 0} \underbrace{x^{\alpha - 2} y^{\beta}}_{\geq 0} \leq 0$$
$$H_{2} = \underbrace{\beta}_{\geq 0} \underbrace{(\beta - 1)}_{\leq 0} \underbrace{x^{\alpha} y^{\beta - 2}}_{\geq 0} \leq 0$$

Example – Cobb-Douglas Function

$$\begin{split} H_{1,2} &= |\mathbf{H}_{f}(\mathbf{x})| \\ &= \alpha(\alpha-1) \, x^{\alpha-2} y^{\beta} \cdot \beta(\beta-1) \, x^{\alpha} y^{\beta-2} - (\alpha \beta \, x^{\alpha-1} y^{\beta-1})^{2} \\ &= \alpha(\alpha-1) \, \beta(\beta-1) \, x^{2\alpha-2} y^{2\beta-2} - \alpha^{2} \beta^{2} \, x^{2\alpha-2} y^{2\beta-2} \\ &= \alpha \beta [(\alpha-1)(\beta-1) - \alpha \beta] x^{2\alpha-2} y^{2\beta-2} \\ &= \underbrace{\alpha \beta}_{\geq 0} \underbrace{(1-\alpha-\beta)}_{\geq 0} \underbrace{x^{2\alpha-2} y^{2\beta-2}}_{\geq 0} \quad \ge 0 \end{split}$$

 $H_1 \leq 0$ and $H_2 \leq 0$, and $H_{1,2} \geq 0$ for all $(x, y) \in D$. f(x, y) thus is *concave* in *D*.

For $0 < \alpha, \beta < 1$ and $\alpha + \beta < 1$ we even find: $H_1 = H_1 < 0$ and $H_2 = |\mathbf{H}_f(\mathbf{x})| > 0$ for almost all $(x, y) \in D$. f(x, y) is then *strictly concave*.

Lower Level Sets of Convex Functions

Assume that f is *convex*. Then the **lower level sets** of f

$$\{\mathbf{x}\in D_f\colon f(\mathbf{x})\leq c\}$$

are convex.

Let
$$\mathbf{x}_1, \mathbf{x}_2 \in {\mathbf{x} \in D_f : f(\mathbf{x}) \le c}$$
,
i.e., $f(\mathbf{x}_1), f(\mathbf{x}_2) \le c$.

Then for
$$\mathbf{y} = (1 - h)\mathbf{x}_1 + h\mathbf{x}_2$$

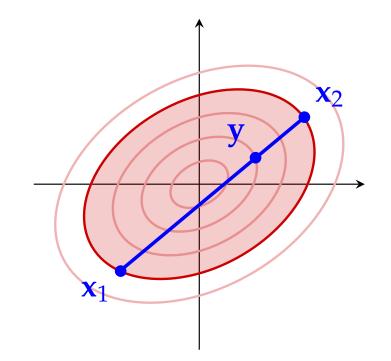
where $h \in [0, 1]$ we find

$$f(\mathbf{y}) = f((1-h)\mathbf{x}_1 + h\mathbf{x}_2)$$

$$\leq (1-h) f(\mathbf{x}_1) + h f(\mathbf{x}_2)$$

$$\leq (1-h)c + hc = c$$

That is, $\mathbf{y} \in {\mathbf{x} \in D_f : f(\mathbf{x}) \le c}$, too.

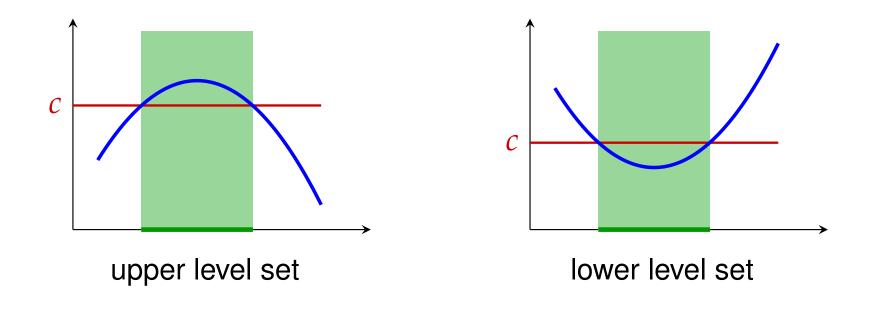


Upper Level Sets of Concave Functions

Assume that f is *concave*. Then the **upper level sets** of f

 $\{\mathbf{x} \in D_f \colon f(\mathbf{x}) \ge c\}$

are convex.



Extremum and Monotone Transformation

Let $T \colon \mathbb{R} \to \mathbb{R}$ be a *strictly monotonically increasing* function.

If \mathbf{x}^* is a *maximum* of f, then \mathbf{x}^* is also a maximum of $T \circ f$.

As \mathbf{x}^* is a *maximum* of f, we have

 $f(\mathbf{x}^*) \ge f(\mathbf{x})$ for all \mathbf{x} .

As T is strictly monotonically increasing, we have

 $T(x_1) > T(x_2)$ falls $x_1 > x_2$.

Thus we find

 $(T \circ f)(\mathbf{x}^*) = T(f(\mathbf{x}^*)) > T(f(\mathbf{x})) = (T \circ f)(\mathbf{x})$ for all \mathbf{x} ,

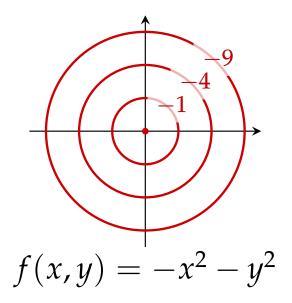
i.e., \mathbf{x}^* is a maximum of $T \circ f$.

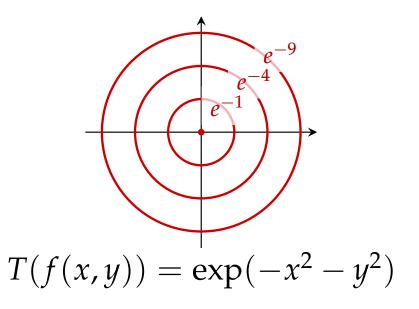
As *T* is one-to-one we also get the converse statement: If \mathbf{x}^* is a *maximum* of $T \circ f$, then it also is a maximum of *f*.

Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T preserves the extrema of f.

Transformation T also preserves the level sets of f:





Quasi-Convex and Quasi-Concave

Function *f* is called **quasi-convex** in $D \subseteq \mathbb{R}^n$, if *D* is *convex* and every *lower level set* $\{\mathbf{x} \in D_f : f(\mathbf{x}) \leq c\}$ is *convex*.

Function f is called **quasi-concave** in $D \subseteq \mathbb{R}^n$, if D is *convex* and every *upper level set* $\{\mathbf{x} \in D_f : f(\mathbf{x}) \ge c\}$ is *convex*.

Convex and Quasi-Convex

Every *concave* (convex) function also is *quasi-concave* (and quasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let *T* be a strictly monotonically increasing function. If function $f(\mathbf{x})$ is *concave* (convex), then $T \circ f$ is *quasi-concave* (and quasi-convex, resp.).

Function $g(x, y) = e^{-x^2 - y^2}$ is quasi-concave, as $f(x, y) = -x^2 - y^2$ is concave and $T(x) = e^x$ is strictly monotonically increasing. However, $g = T \circ f$ is not concave.

A Weaker Condition

The notion of *quasi-convex* is **weaker** than that of *convex* in the sense that every convex function also is quasi-convex but not vice versa. There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation that a couple of propositions still hold if "convex" is replaced by "quasi-convex".

In this way we get a generalization of a theorem, where a *stronger* condition is replaced by a *weaker* one.

Quasi-Convex and Quasi-Concave II

Function f is quasi-convex if and only if

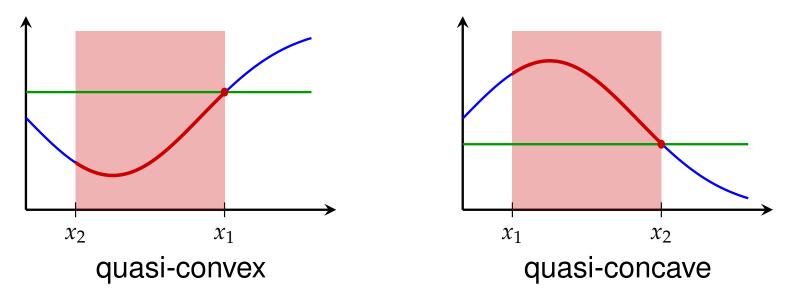
$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \le \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$$

for all $\mathbf{x}_1, \mathbf{x}_2$ and $h \in [0, 1]$.

Function f is quasi-concave if and only if

 $f((1-h)\mathbf{x}_1+h\mathbf{x}_2) \geq \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$

for all $\mathbf{x}_1, \mathbf{x}_2$ and $h \in [0, 1]$.



Strictly Quasi-Convex and Quasi-Concave

► Function *f* is called **strictly quasi-convex** if

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) < \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}\$$

for all $\mathbf{x}_1, \mathbf{x}_2$, with $\mathbf{x}_1 \neq \mathbf{x}_2$, and $h \in (0, 1)$.

Function f is called strictly quasi-concave if

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) > \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$$

for all $\mathbf{x}_1, \mathbf{x}_2$, with $\mathbf{x}_1 \neq \mathbf{x}_2$, and $h \in (0, 1)$.

Quasi-convex and Quasi-Concave III

For a differentiable function f we find:

► Function *f* is *quasi-convex* if and only if

$$f(\mathbf{x}) \leq f(\mathbf{x}_0) \quad \Rightarrow \quad \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \leq 0$$

► Function *f* is *quasi-concave* if and only if

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) \quad \Rightarrow \quad \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \ge 0$$

Summary

- monotone function
- convex set
- convex and concave function
- convexity and definiteness of quadratic form
- minors of Hessian matrix
- quasi-convex and quasi-concave function