Chapter 13

Convex and Concave
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Monotone Functions®

>

Function f is called monotonically increasing, if

<x = flx1) < f(x) flea)

It is called strictly monotonically increasing, it ~ f(x1) [

x1 < X < f(x1) < f(x2) X1 2
Function f is called monotonically decreasing, if 1
x1 < x = f(x1) > f(x2) fx) |
It is called strictly monotonically decreasing, if  f(x,) |
>

x1 < X2 & f(x1) > f(x2) X1 X2
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Monotone Functions®

For differentiable functions we have

f monotonically increasing < f'(x) >0 forallx € D¢
f monotonically decreasing < f'(x) <0 forallx € D¢

f strictly monotonically increasing < f'(x) >0 forallx € Dy
f strictly monotonically decreasing < f'(x) <0 forallx € Dy

Function f: (0,00), x — In(x) is strictly monotonically increasing, as

f'(x) = (In(x)) = % >0 forallx >0
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Locally Monotone Functions™

A function f can be monotonically increasing in some interval and
decreasing in some other interval.

For continuously differentiable functions (i.e., when f’(x) is continuous)
we can use the following procedure:

1. Compute first derivative f'(x).
2. Determine all roots of f(x).
3. We thus obtain intervals where f’(x) does not change sign.

4. Select appropriate points x; in each interval and determine the
sign of f'(x;).
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Example — Locally Monotone Functions*®

In which region is function f(x) =2x> —12x* +18x — 1
monotonically increasing?

We have to solve inequality f'(x) > 0:
1. f'(x) = 6x>—24x+18

2. Roots: x2—4x+3=0 = x1=1, x, =23
3. Obtain 3 intervals: (—o0,1], [1,3], and [3,0)

4. Sign of f'(x) at appropriate points in each interval:
1'(0)=3>0,f'(2) =—-1<0,and f'(4) =3 > 0.

)
5. f’(x) cannot change sign in each interval:
f'(x) > 0in (—o0,1] and [3, c0).

Function f(x) is monotonically increasing in (—oo, 1] and in |3, c0).
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Monotone and Inverse Function

If f is strictly monotonically increasing, then

x1 < x2 & f(x1) < f(x2)
immediately implies

x1# x2 & f(x1) # f(x2)
That is, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing),
then f is invertible.

Josef Leydold — Foundations of Mathematics — WS 2024/25 13 — Convex and Concave — 6/45



Convex Set

A set D C IR" is called convex, if for any two points x,y € D the
straight line segment between these points also belongs to D, i.e.,

(1—h)x+hyeD forallhe|0,1], andx,y € D .

® X% J

not convex:
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Intersection of Convex Sets

Let S1,...,S; be convex subsets of R". Then their intersection
S1M...N S is also convex.

The union of convex sets need not be convex.
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Example — Half-Space

Let p € R" and m € IR be fixed, p # 0. Then
H={xeR":p' x=m}
is a so called hyper-plane which partitions the IR” into two half-spaces

H, ={xeR":p'-x>m},
H ={xeR":p'-x<m}.

Sets H, H, and H_ are convex.

Let x be a vector of goods, p the vector of prices and m the budget.
Then the budget set is convex.

{(x e R": p' -x <m,x >0}
={x:p' - x<m}n{x:x;>0}N...Nn{x: x, >0}
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Convex and Concave Functions

Function f is called convex in domain D C R", if D is convex and

fAA=h)xi +hxp) < (1=h) f(x1) + 1 fx)

for all x;,x, € D and all h € [0, 1]. Itis called concave, if

f((1=h)x1 +hxy) > (1—h) f(x1) +h f(x2)

A

| — | —
X1 X2 X1 X2

convex concave
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Concave Function®

f((l — h) X1 —+ th) Z (1 — h) f(xl) + hf(XQ)

A

f((l_h)xl -|—hx2)

(1—h) f(x1) +h f(x2)

>
X1 X2
(1—h)x1+hx

Secant is below the graph of function f.
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Strictly Convex and Concave Functions

Function f is strictly convex in domain D C IR", if D is convex and

fAA=h)xi +hxp) < (1 =) f(x1) + 1 fx)

for all x1,x, € D withx; # xp and allh € (0,1).

Function f is strictly concave in domain D C R", if D is convex and

fAA=h)xi+hxp) > (1 =h) f(x1) + 1 f(x2)

for all x1,x, € D withx; # xp and allh € (0,1).
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Example — Linear Function

Let a € IR" be fixed.
Then f(x) = a' - x is a linear map and we find:

f((1—=h)xi+hxy)=a" - ((1—h)x; +hxp)
=(1—-h)a' -x;+ha' -x
= (1=h) f(x) + 1 fx)

That is, every linear function is both concave and convex.

However, a linear function is neither strictly concave nor strictly convex,
as the inequality is never strict.
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Example — Quadratic Univariate Function

Function f(x) = x?

f(A=h)x+hy)— [(1—h) f(x)+hf(y)]
= ((1—h)x+hy)*—[(1—h)x*+ hy?]
= (1—h)2x2—|—2(1—h)hxy—l—h2 2 _ (l—h)xz—hy2
—h(1—h)x* +2(1 —h)hxy — h(1 — h) y?
= —h(1—h) (x —y)*
<0 forx #yand0 < h <1.

IS strictly convex:

Thus
f(A=m)x+hy) <A —=h)f(x)+hf(y)

forallx #yand0 < h <1,
i.e., f(x) = x? is strictly convex, as claimed.
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Properties

> If f(x) is (strictly) convex, then — f(x) is (strictly) concave
(and vice versa).

> If f1(x),..., fr(x) are convex (concave) functions and
x1,...,0 > 0, then

g(x) = ayf1(x) + - - + agfr(x)

IS also convex (concave).

> If (at least) one of the functions f;(x) is strictly convex (strictly
concave), then g(x) is strictly convex (strictly concave).
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Properties

A

For a differentiable functions the following holds:
» Function f is concave if and only if

f(x) = f(x0) < Vf(xo) - (x = x0)

l.e., the function graph is always below the tangent.

Y

X0

» Function f is strictly concave if and only if

f(x) = f(x0) < Vf(x0) - (x—x0)  forallx £ xo

» Function f is convex if and only if

f(x) = f(x0) = Vf(xo) - (x = x0)

(Analogous for strictly convex functions.)

Y
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Univariate Functions™

For two times differentiable functions we have

fconvex <& f"(x) >0 forallx € Dy
fconcave <« f"(x) <0 forallx € Dy

Derivative f'(x) is
monotonically decreasing,

thus f(x) < 0.

>
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Univariate Functions™

For two times differentiable functions we have

f strictly convex <« f"(x) >0 forallx € D¢
f strictly concave <« f"(x) <0 forallx € D¢
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Example — Convex Function®

Exponential function:

x)=¢e*>0 forallx € R

(
exp(x) is (strictly) convex.

Y
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Example — Concave Function™

Logarithm function: (x > 0)

f(x) = In(x)
f(x) =L

F(x) = _% <0 forallx >0

In(x) is (strictly) concave.
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Locally Convex Functions*®

A function f can be convex in some interval and concave in some other
interval.

For two times continuously differentiable functions (i.e., when f”(x) is
continuous) we can use the following procedure:

1. Compute second derivative f”(x).
2. Determine all roots of f"(x).
3. We thus obtain intervals where f”(x) does not change sign.

4. Select appropriate points x; in each interval and determine the
sign of " (x;).
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Locally Concave Function™

In which region is f(x) = 2x° —12x? + 18 x — 1 concave?

We have to solve inequality /" (x) < 0.
1. f'(x) =12x—24

2. Roots: 12x—-24=0 = x=2
3. Obtain 2 intervals: (—o0,2] and |2, c0)

4. Sign of f'(x) at appropriate points in each interval:
f"(0) =—-24 <0and f"(4) =24 > 0.

5. f”(x) cannot change sign in each interval: f”(x) < 0in ( —oo,2]

Function f(x) is concave in (—oo,2].
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Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if
every restriction of its domain to a straight line results in a convex
univariate function. That is:

Function f: D C R" — IR is convex /

if and only if

>
2(t) = f(xo+t-h) is convex /
"

7 |

for all xg € D and >
L

’

all non-zero h € IR".
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Quadratic Form

Let A be a symmetric matrix
and g4 (x) = x' Ax be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its
eigenvectors, then A becomes a diagonal matrix with the eigenvalues
of A as its elements:

ga(x) = Alx% + Azxg + oo+ Anx% .

» Itis convex if all eigenvalues A; > 0
as it is the sum of convex functions.

» ltis concaveifall A; <0
as it is the negative of a convex function.

» |t is neither convex nor concave if we have eigenvalues with
A; > 0and A; < 0.
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Quadratic Form

We find for a quadratic form ga:

» strictly convex <& positive definite

» CONvex & positive semidefinite
» Strictly concave < negative definite

» concave & negative semidefinite
» neither & Indefinite

We can determine the definiteness of A by means of
» the eigenvalues of A, or
» the (leading) principle minors of A.

Josef Leydold — Foundations of Mathematics — WS 2024/25 13 — Convex and Concave — 25/45



Example — Quadratic Form

2 1 0
letA=1]|1 3 -—-1]. Leading principle minors:
0 —1 2
A1=2 >0
2 1
Ay = =5 >0
1 3
2 1 0
As=|Al=11 3 —-1|=8 >0
0 —1 2

A is thus positive definite.
Quadratic form g4 is strictly convex.

Josef Leydold — Foundations of Mathematics — WS 2024/25 13 — Convex and Concave — 26 /45



Example — Quadratic Form

-1 O 1
letA=]1 0 -4 2 |. Principle Minors:
1 2 =2
A= —1 Ay =—4 Az = -2
—1 0 —1 1 —4 2
A1p = =4 Ai3= =1 Ay3= =4
1,2 0 _4 1,3 1 _» 2,3 5 _9o
—1 0 1 Aj; <0
A1,2,3 =10 —4 21 =0 Ai,j 2 0
1 2 —2 A1,2,3 S 0

A is thus negative semidefinite.
Quadratic form g4 is concave (but not strictly concave).
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Concavity of Differentiable Functions

Le f: D C R" — R with Taylor series expansion
f(xo+h) = f(x0) + Vf(x0) - h+3h" -Hf(x0) -h + O(||h[")

Hessian matrix H¢(xo) determines the concavity or convexity of f
around expansion point xg.

» H((xo) positive definite =~ f strictly convex around X
» H¢(xo) negative definite = f strictly concave around xo

» H¢(x) positive semidefinite forallx € D < f convex in D
» H(x) negative semidefinite forallx € D <« f concavein D
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Recipe — Strictly Convex

1. Compute Hessian matrix

Hy(x) =

2. Compute all leading principle minors H;.

3.

» f strictly convex

/fxm(x) frix, (X)
fxle(x) fxzxz(x)

\Frars () frnrs (X)

& allHy >0

g (%))
 for, (%)

< fom(x)/

for (almost) all x € D

» f strictly concave < all (—1)*H, > 0 for (almost) all x € D

[ (=1)*H, > 0implies: Hy, Hs,... < 0and Hy, Hy,... > 0]

4. Otherwise f is neither strictly convex nor strictly concave.
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Recipe — Convex

1. Compute Hessian matrix

/fxlxl(x) fx1x2(x) fxlxn(x>\

Hf(x): fxle(x) fxzxz(x) fxzxiq(x)

\fxnm fxnxz() fxnxn(x))

2. Compute all principle minors H;, . ; .
(Only required if det(Hs) = 0, see below)

3. » feconvex <& alH, ;

>0 forall x € D.
» f concave < all (—1)fH; ; >0 forallx € D.

11,/

4. Otherwise f is neither convex nor concave.
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Recipe — Convex Il

Computation of all principle minors can be avoided if det(Hy) # 0.
Then a function is either strictly convex/concave (and thus
convex/concave) or neither convex nor concave.

In particular we have the following recipe:
1. Compute Hessian matrix H(x).
2. Compute all leading principle minors H;.
3. Check if det(Hy) # 0.
4. Check for strict convexity or concavity.

5. Ifdet(H¢) # 0 and f is neither strictly convex nor concave, then f
IS neither convex nor concave, either.
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Example — Strict Convexity

Is function f (strictly) concave or convex?

f(x,y) = x4+x2—2xy+y2

12x>42 =2
1. Hessian matrix: Hf(x)—< x; 2)

2. Leading principle minors:
Hi=12x%*+2 > 0
H, = |Hf(x)| =24x* >0 forallx # 0.

3. All leading principle minors > 0 for almost all x
= f is strictly convex. (and thus convex, too)
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Example — Cobb-Douglas Function

Let f(x,y) = x*yP witha, B > 0anda + B < 1,
and D = {(x,y): x,y > 0}.

Hessian matrix at x:

H, (x) = a(a—1)x* 2P afxtlyP1
PR apar il BB —1) atyP 2

Principle Minors:
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Example — Cobb-Douglas Function

Hip = [He(x)]
= a0 —1)x 2P BB~ 1) 2yP 2 — (apxtlyP )3
= a(x—1) (,3 1) x20=2y2=2 _ 2 B2 y20=22p—2
= apl(a=1)(f—1) - 06/3] A2y
:“,B (1—06—18)3(:2“22’52 ZO
N~ -~ (& ~~ J/
>0 >0 >0

H; <0 and H, <0,and Hy, >0 forall (x,y) € D
f(x,vy) thus is concave in D.

ForO <a,B <1landa+ B < 1we even find:
H; = H; <0 and H = |H¢(x)| > 0 foralmostall (x,y) € D.

f(x,vy) is then strictly concave.
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Lower Level Sets of Convex Functions

Assume that f is convex. A
Then the lower level sets of f

{x € Df: f(x) <c} //%xz
are convex. V4 —
Let x1,x2 € {x € Df: f(x) < c}, %/

e, f(x1), f(x2) <c. X4
Then fory = (1 — h)x; + hxy
where h € |0, 1] we find
fly) = f((1 = h)x1 + hxz)
< (I=h)flx1) +hf(x)
< (1—-h)c+hc=c

Thatis, y € {x € D¢: f(x) < c}, too.
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Upper Level Sets of Concave Functions

Assume that f is concave.
Then the upper level sets of f

{X c Dfl f(X) > C}
are convex.

A A

: //\\ C \\//

\ 4
\ 4

upper level set lower level set

Josef Leydold — Foundations of Mathematics — WS 2024/25 13 — Convex and Concave — 36/ 45



Extremum and Monotone Transformation

Let T: R — IR be a strictly monotonically increasing function.

If x* is @ maximum of f, then x* is also a maximum of T o f.

As x* is a maximum of f, we have
f(x*) > f(x) for all x.

As T is strictly monotonically increasing,we have
T(x1) > T(xp) falls x; > x».

Thus we find

(To £)(x*) = T(f(x*)) > T(f(x)) = (T f)(x) for all .

i.e., x* is a maximum of T o f.

As T is one-to-one we also get the converse statement:
If x* is a maximum of T o f, then it also is a maximum of f.
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Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T  preserves the
extrema of f.

Transformation T also preserves the level sets of f:

A

T(f(x,y)) = exp(—x* —y?)
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Quasi-Convex and Quasi-Concave

Function f is called quasi-convex in D C IR”, if D is convex and every
lower level set {x € D¢: f(x) < c} is convex.

Function f is called quasi-concave in D C R", if D is convex and
every upper level set {x € D¢: f(x) > c} is convex.
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Convex and Quasi-Convex

Every concave (convex) function also is quasi-concave (and
guasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let T be a strictly monotonically increasing function.
If function f(x) is concave (convex), then T o f is quasi-concave (and
guasi-convex, resp.).

Function g(x,y) = e * ¥ is quasi-concave, as f(x,y) = —x% — 2 is

concave and T (x) = e* is strictly monotonically increasing.
However, ¢ = T o f is not concave.
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A Weaker Condition

The notion of quasi-convex is weaker than that of convex in the sense
that every convex function also is quasi-convex but not vice versa.
There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation
that a couple of propositions still hold if “convex” is replaced by
“quasi-convex”.

In this way we get a generalization of a theorem, where a stronger
condition is replaced by a weaker one.
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Quasi-Convex and Quasi-Concave Il

» Function f is quasi-convex if and only if

fUL = h)x1 + hxp) < max{f(x1), f(x2)}

for all x1,x2 and h € [0, 1].

» Function f is quasi-concave if and only if

fU(1=h)x1 + hxa) > min{f(x1), f(x2)}

for all x1,x2 and h € [0, 1].

A A

xlz Xll xll xIZ
quasi-convex guasi-concave
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Strictly Quasi-Convex and Quasi-Concave

» Function f is called strictly quasi-convex if

fUL = h)xq + hxy) < max{f(x1), f(x2)}

for all xq1, x2, with x; # xp,and h € (0,1).

» Function f is called strictly quasi-concave if

fU1=h)x1 +hxp) > min{f(x1), f(x2) }

for all x1, x2, with x; # xp,and h € (0,1).
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Quasi-convex and Quasi-Concave lll

For a differentiable function f we find:

» Function f is quasi-convex if and only if

f(x) < f(x0) = Vf(xo) (x—x0) <0

» Function f is quasi-concave if and only if

f(x) = fxo) = Vf(xo)- (x—x) >0
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Summary

monotone function

convex set

convex and concave function

convexity and definiteness of quadratic form
minors of Hessian matrix

vvvyvyy

quasi-convex and quasi-concave function
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