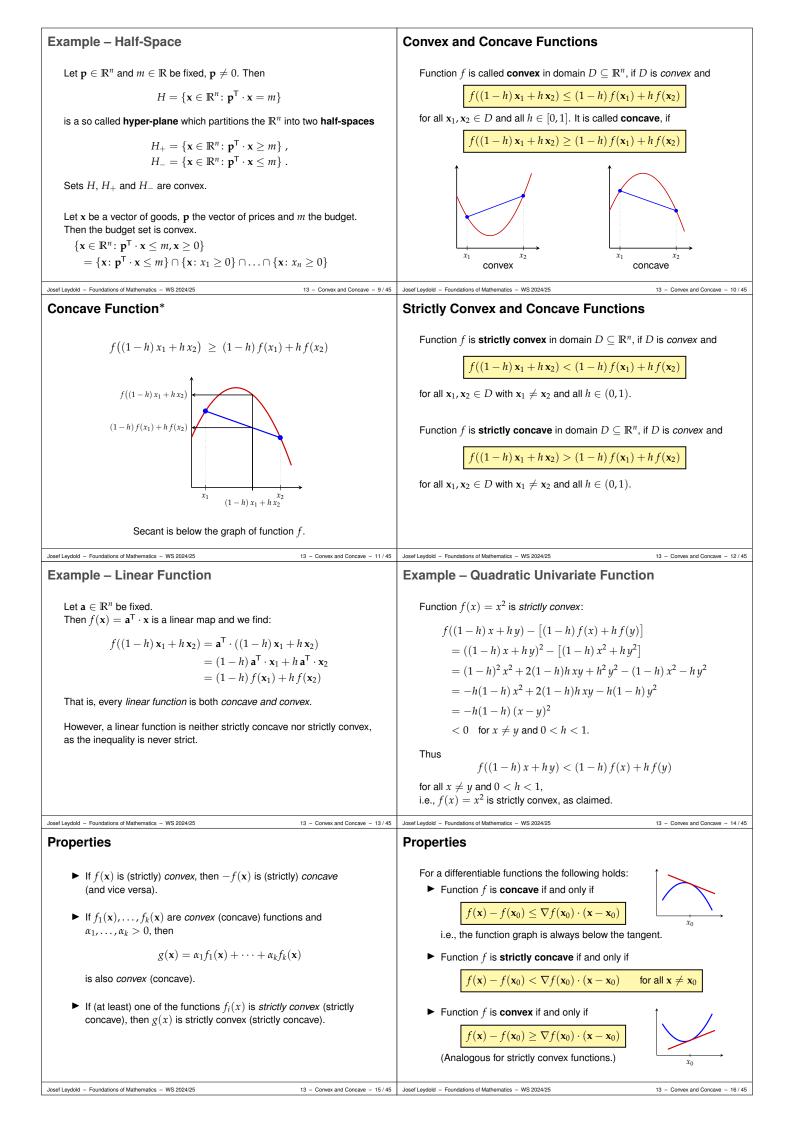
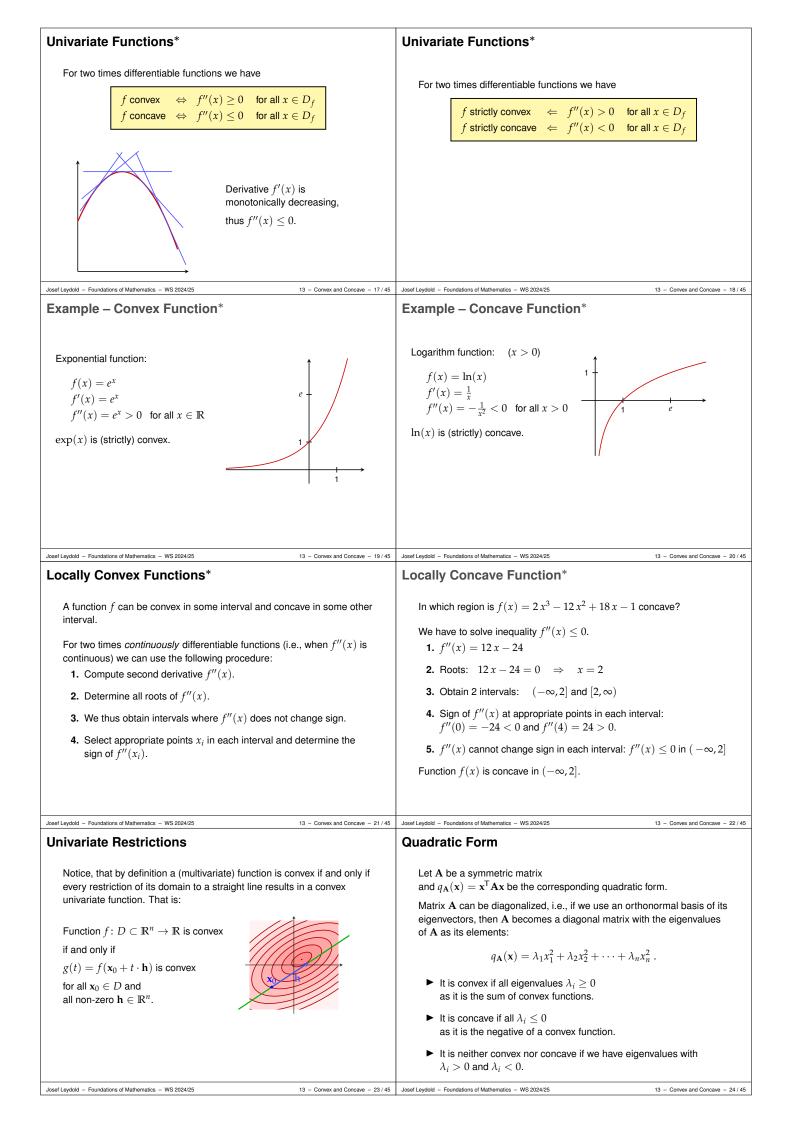


Josef Leydold - Foundations of Mathematics - WS 2024/25





Quadratic Form	Example – Quadratic Form
We find for a quadratic form $q_{\mathbf{A}}$:	Let $\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. Leading principle minors:
 strictly convex convex b convex concave concave concave concave concave concave indefinite 	$\begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 2 \end{pmatrix}$ $A_1 = 2 > 0$ $A_2 = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5 > 0$
 We can determine the definiteness of A by means of ▶ the eigenvalues of A, or ▶ the (leading) principle minors of A. 	$A_{3} = \mathbf{A} = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8 > 0$ A is thus positive definite. Quadratic form $q_{\mathbf{A}}$ is <i>strictly convex</i> .
Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 25 / 45	Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 26 / 45
Example – Quadratic Form	Concavity of Differentiable Functions
Let $\mathbf{A} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{pmatrix}$. Principle Minors: $A_1 = -1$ $A_2 = -4$ $A_3 = -2$	Le $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ with Taylor series expansion $f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^T \cdot \mathbf{H}_f(\mathbf{x}_0) \cdot \mathbf{h} + \mathcal{O}(\ \mathbf{h}\ ^3)$ <i>Hessian matrix</i> $\mathbf{H}_f(\mathbf{x}_0)$ determines the concavity or convexity of f around expansion point \mathbf{x}_i
$A_{1,2} = \begin{vmatrix} -1 & 0 \\ 0 & -4 \end{vmatrix} = 4 A_{1,3} = \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = 1 A_{2,3} = \begin{vmatrix} -4 & 2 \\ 2 & -2 \end{vmatrix} = 4$ $A_{1,2,3} = \begin{vmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{vmatrix} = 0 \qquad \qquad A_{i,j} \ge 0$ $A_{1,2,3} \le 0$	around expansion point \mathbf{x}_0 . • $\mathbf{H}_f(\mathbf{x}_0)$ positive definite $\Rightarrow f$ strictly convex around \mathbf{x}_0 • $\mathbf{H}_f(\mathbf{x}_0)$ negative definite $\Rightarrow f$ strictly concave around \mathbf{x}_0
$\begin{vmatrix} 1 & 2 & -2 \end{vmatrix}$ $A_{1,2,3} \leq 0$ A is thus negative semidefinite. Quadratic form q_A is <i>concave</i> (but not strictly concave).	► $\mathbf{H}_{f}(\mathbf{x})$ positive semidefinite for all $\mathbf{x} \in D$ \Leftrightarrow f convex in D ► $\mathbf{H}_{f}(\mathbf{x})$ negative semidefinite for all $\mathbf{x} \in D$ \Leftrightarrow f concave in D
Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 27 / 45	Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 28 / 45
Recipe – Strictly Convex	Recipe – Convex
1. Compute Hessian matrix	1. Compute Hessian matrix
$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{pmatrix}$	$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{pmatrix}$
2. Compute all <i>leading principle minors</i> H_i .	2. Compute all <i>principle minors</i> $H_{i_1,,i_k}$. (Only required if det(\mathbf{H}_f) = 0, see below)
3. ► <i>f strictly convex</i> \Leftrightarrow all $H_k > 0$ for (almost) all $\mathbf{x} \in D$ ► <i>f strictly concave</i> \Leftrightarrow all $(-1)^k H_k > 0$ for (almost) all $\mathbf{x} \in D$	3. ► <i>f</i> convex \Leftrightarrow all $H_{i_1,,i_k} \ge 0$ for all $\mathbf{x} \in D$. ► <i>f</i> concave \Leftrightarrow all $(-1)^k H_{i_1,,i_k} \ge 0$ for all $\mathbf{x} \in D$.
[$(-1)^k H_k > 0$ implies: $H_1, H_3, \ldots < 0$ and $H_2, H_4, \ldots > 0$]	4. Otherwise <i>f</i> is <i>neither</i> convex <i>nor</i> concave.
4. Otherwise <i>f</i> is <i>neither</i> strictly convex <i>nor</i> strictly concave.	
Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 29 / 45 Recipe – Convex II	Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 30 / 45 Example - Strict Convexity
Computation of <i>all</i> principle minors can be avoided if $det(\mathbf{H}_f) \neq 0$. Then a function is either strictly convex/concave (and thus convex/concave) or neither convex nor concave.	Is function f (strictly) concave or convex? $f(x,y) = x^4 + x^2 - 2xy + y^2$
In particular we have the following recipe:	
1. Compute Hessian matrix $\mathbf{H}_{f}(\mathbf{x})$.	1. Hessian matrix: $\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} 12 \ x^{2} + 2 & -2 \\ -2 & 2 \end{pmatrix}$
2. Compute all <i>leading principle minors</i> H_i .	2. Leading principle minors:
3. Check if $\det(\mathbf{H}_f) \neq 0$.	$H_1 = 12 x^2 + 2 > 0$
4. Check for strict convexity or concavity.	$H_2 = \mathbf{H}_f(\mathbf{x}) = 24 x^2 > 0 \text{for all } x \neq 0.$
5. If $det(\mathbf{H}_f) \neq 0$ and f is neither strictly convex nor concave, then f is neither convex nor concave, either.	3. All leading principle minors > 0 for almost all \mathbf{x} $\Rightarrow f$ is <i>strictly convex</i> . (and thus convex, too)

Example – Cobb-Douglas Function	Example – Cobb-Douglas Function
Let $f(x, y) = x^{\alpha}y^{\beta}$ with $\alpha, \beta \ge 0$ and $\alpha + \beta \le 1$, and $D = \{(x, y) : x, y \ge 0\}$. Hessian matrix at x: $\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} \alpha(\alpha - 1) x^{\alpha - 2}y^{\beta} & \alpha\beta x^{\alpha - 1}y^{\beta - 1} \\ \alpha\beta x^{\alpha - 1}y^{\beta - 1} & \beta(\beta - 1) x^{\alpha}y^{\beta - 2} \end{pmatrix}$ Principle Minors: $H_{1} = \underbrace{\alpha}_{\ge 0} \underbrace{(\alpha - 1)}_{\le 0} \underbrace{x^{\alpha - 2}y^{\beta}}_{\ge 0} \le 0$ $H_{2} = \underbrace{\beta}_{\ge 0} \underbrace{(\beta - 1)}_{\le 0} \underbrace{x^{\alpha}y^{\beta - 2}}_{\ge 0} \le 0$	$\begin{split} H_{1,2} &= \mathbf{H}_{f}(\mathbf{x}) \\ &= \alpha(\alpha-1) x^{\alpha-2}y^{\beta} \cdot \beta(\beta-1) x^{\alpha}y^{\beta-2} - (\alpha\beta x^{\alpha-1}y^{\beta-1})^{2} \\ &= \alpha(\alpha-1) \beta(\beta-1) x^{2\alpha-2}y^{2\beta-2} - \alpha^{2}\beta^{2} x^{2\alpha-2}y^{2\beta-2} \\ &= \alpha\beta[(\alpha-1)(\beta-1) - \alpha\beta]x^{2\alpha-2}y^{2\beta-2} \\ &= \underbrace{\alpha\beta}_{\geq 0} \underbrace{(1-\alpha-\beta)}_{\geq 0} \underbrace{x^{2\alpha-2}y^{2\beta-2}}_{\geq 0} \ge 0 \\ \\ H_{1} &\leq 0 \text{ and } H_{2} \leq 0, \text{ and } H_{1,2} \geq 0 \text{ for all } (x,y) \in D. \\ f(x,y) \text{ thus is concave in } D. \\ \\ \\ \mathbf{For } 0 < \alpha, \beta < 1 \text{ and } \alpha + \beta < 1 \text{ we even find:} \\ H_{1} = H_{1} < 0 \text{ and } H_{2} = \mathbf{H}_{f}(\mathbf{x}) > 0 \text{ for almost all } (x,y) \in D. \\ f(x,y) \text{ is then strictly concave.} \end{split}$
Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 33 /	45 Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 34 /4
Lower Level Sets of Convex Functions	Upper Level Sets of Concave Functions
Assume that f is convex. Then the lower level sets of f $\{\mathbf{x} \in D_f : f(\mathbf{x}) \le c\}$ are convex. Let $\mathbf{x}_1, \mathbf{x}_2 \in \{\mathbf{x} \in D_f : f(\mathbf{x}) \le c\}$, i.e., $f(\mathbf{x}_1), f(\mathbf{x}_2) \le c$. Then for $\mathbf{y} = (1 - h)\mathbf{x}_1 + h\mathbf{x}_2$ where $h \in [0, 1]$ we find $f(\mathbf{y}) = f((1 - h)\mathbf{x}_1 + h\mathbf{x}_2)$ $\le (1 - h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$ $\le (1 - h)c + hc = c$ That is, $\mathbf{y} \in \{\mathbf{x} \in D_f : f(\mathbf{x}) \le c\}$, too.	Assume that f is concave. Then the upper level sets of f $\{\mathbf{x} \in D_f : f(\mathbf{x}) \ge c\}$ are convex. $\int \frac{1}{\int \int \int \frac{1}{\int \frac$
Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 35 /	45 Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 36 / 4
Extremum and Monotone Transformation	Extremum and Monotone Transformation
Let $T \colon \mathbb{R} \to \mathbb{R}$ be a <i>strictly monotonically increasing</i> function. If \mathbf{x}^* is a <i>maximum</i> of f , then \mathbf{x}^* is also a maximum of $T \circ f$. As \mathbf{x}^* is a <i>maximum</i> of f , we have $f(\mathbf{x}^*) \ge f(\mathbf{x})$ for all \mathbf{x} . As T is strictly monotonically increasing, we have $T(x_1) > T(x_2)$ falls $x_1 > x_2$. Thus we find $(T \circ f)(\mathbf{x}^*) = T(f(\mathbf{x}^*)) > T(f(\mathbf{x})) = (T \circ f)(\mathbf{x})$ for all \mathbf{x} , i.e., \mathbf{x}^* is a maximum of $T \circ f$. As T is one-to-one we also get the converse statement: If \mathbf{x}^* is a <i>maximum</i> of $T \circ f$, then it also is a maximum of f .	A strictly monotonically increasing Transformation <i>T</i> preserves the extrema of <i>f</i> . Transformation <i>T</i> also preserves the level sets of <i>f</i> : $f(x,y) = -x^2 - y^2$ $T(f(x,y)) = \exp(-x^2 - y^2)$
Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 37 /	45 Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 38/4
Quasi-Convex and Quasi-Concave	Convex and Quasi-Convex
Function f is called quasi-convex in $D \subseteq \mathbb{R}^n$, if D is <i>convex</i> and every <i>lower level set</i> $\{\mathbf{x} \in D_f : f(\mathbf{x}) \le c\}$ is <i>convex</i> . Function f is called quasi-concave in $D \subseteq \mathbb{R}^n$, if D is <i>convex</i> and every <i>upper level set</i> $\{\mathbf{x} \in D_f : f(\mathbf{x}) \ge c\}$ is <i>convex</i> .	Every <i>concave</i> (convex) function also is <i>quasi-concave</i> (and quasi-convex, resp.). However, a quasi-concave function need not be concave. Let <i>T</i> be a strictly monotonically increasing function. If function $f(\mathbf{x})$ is <i>concave</i> (convex), then $T \circ f$ is <i>quasi-concave</i> (and quasi-convex, resp.). Function $g(x,y) = e^{-x^2-y^2}$ is quasi-concave, as $f(x,y) = -x^2 - y^2$ is concave and $T(x) = e^x$ is strictly monotonically increasing. However, $g = T \circ f$ is not concave.

A Weaker Condition	Quasi-Convex and Quasi-Concave II
The notion of <i>quasi-convex</i> is weaker than that of <i>convex</i> in the sense that every convex function also is quasi-convex but not vice versa. There are much more quasi-convex functions than convex ones. The importance of such a weaker notions is based on the observation that a couple of propositions still hold if "convex" is replaced by "quasi-convex". In this way we get a generalization of a theorem, where a <i>stronger</i> condition is replaced by a <i>weaker</i> one.	 Function f is quasi-convex if and only if f((1-h)x₁ + hx₂) ≤ max{f(x₁), f(x₂)} for all x₁, x₂ and h ∈ [0, 1]. Function f is quasi-concave if and only if f((1-h)x₁ + hx₂) ≥ min{f(x₁), f(x₂)} for all x₁, x₂ and h ∈ [0, 1]. for all x₁, x₂ and h ∈ [0, 1].
Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 41 / 45	Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 42 / 45
Strictly Quasi-Convex and Quasi-Concave Function f is called strictly quasi-convex if $f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) < \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$ for all $\mathbf{x}_1, \mathbf{x}_2$, with $\mathbf{x}_1 \neq \mathbf{x}_2$, and $h \in (0, 1)$. Function f is called strictly quasi-concave if $f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) > \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$ for all $\mathbf{x}_1, \mathbf{x}_2$, with $\mathbf{x}_1 \neq \mathbf{x}_2$, and $h \in (0, 1)$.	Quasi-convex and Quasi-Concave III For a differentiable function f we find: Function f is <i>quasi-convex</i> if and only if $f(\mathbf{x}) \le f(\mathbf{x}_0) \implies \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \le 0$ Function f is <i>quasi-concave</i> if and only if $f(\mathbf{x}) \ge f(\mathbf{x}_0) \implies \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \ge 0$
Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 43 / 45	Josef Leydold – Foundations of Mathematics – WS 2024/25 13 – Convex and Concave – 44 / 45
Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 43/45 Summary monotone function convex set convex and concave function convexity and definiteness of quadratic form minors of Hessian matrix quasi-convex and quasi-concave function Josef Leydold - Foundations of Mathematics - WS 2024/25 13 - Convex and Concave - 45/45	toden ceguoo – roundatona on maaneminatous – mo 2024/20 13 – Convex and Condave – 44/45