Monotone Functions™

Function f is called monotonically increasing, if

<o = f@)<f)| @
Chapter 13 It is called strictly monotonically increasing, if ~ f(x1) 7’
| X < Xxp & f(xl) < f(XQ) | X1 X2
Convex and Concave
Function f is called monotonically decreasing, if
| 1 < x = f(x1) > f(x2) | Flxr) L
It is called strictly monotonically decreasing, it ~ f(x,) F
| X1 < X2 < f(xl) > f(x2) | X x2
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Monotone Functions™ Locally Monotone Functions*
For differentiable functions we have A function f can be monotonically increasing in some interval and
decreasing in some other interval.
f monotonically increasing < f/(x) >0 forall x € Dy
f monotonically decreasing < f'(x) <0 forallx € Dy For continuously differentiable functions (i.e., when f’(x) is continuous)
we can use the following procedure:

f strictly monotonically increasing < f'(x) >0 forallx € Dy
f strictly monotonically decreasing <« f/(x) <0 forallx € D

Function f: (0,c0), x — In(x) is strictly monotonically increasing, as

fl(x) = (In(x))" = % >0 forallx >0

1. Compuite first derivative f'(x).
2. Determine all roots of f'(x).
3. We thus obtain intervals where f’(x) does not change sign.

4. Select appropriate points x; in each interval and determine the
sign of f'(x;).
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Example — Locally Monotone Functions*

In which region is function f(x) = 2x% —12x2 +18x — 1
monotonically increasing?
We have to solve inequality f'(x) > 0:

1. f'(x) =6x*—24x +18

2. Roots: x> —4x+3=0 = x=1,x=3

3. Obtain 3 intervals:  (—oo,1], [1,3], and [3, )

4. Sign of f'(x) at appropriate points in each interval:
F1(0)=3>0, f(2) =—1<0,and f/(4) =3 > 0.

5. f’(x) cannot change sign in each interval:
f(x) > 0in (—o0,1] and [3, o).

Function f(x) is monotonically increasing in (—oo, 1] and in [3, co).

Monotone and Inverse Function

If f is strictly monotonically increasing, then

1 <x & f(x1) < f(x2)
immediately implies

x#Fx & f(x)# f(x)
That s, f is one-to-one.

So if f is onto and strictly monotonically increasing (or decreasing),
then f is invertible.
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Convex Set

A set D C IR" is called convex, if for any two points x,y € D the
straight line segment between these points also belongs to D, i.e.,

(I1-h)x+hyeD

O
.-

forallh € [0,1], andx,y € D .

convex:

not convex:

" 4
=

Intersection of Convex Sets

Let Sq,..., S be convex subsets of IR”. Then their intersection
S1N...N Sy is also convex.

The union of convex sets need not be convex.
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Example — Half-Space

Letp € R" and m € R be fixed, p # 0. Then
H={xcR":p'-x=m}
is a so called hyper-plane which partitions the IR” into two half-spaces

Hy ={xeR":p"
_={xeR":p"

-x>m},
-x <m}.

Sets H, H; and H_ are convex.

Let x be a vector of goods, p the vector of prices and m the budget.
Then the budget set is convex.
{xeR": p"-x < m,x >0}

={x:p" -x<m}Nn{x:x;>0}N...N{x: x, >0}

Convex and Concave Functions

Function f is called convex in domain D C IR”, if D is convex and

| A=) +hx2) < (1=h) f(x) + 1 f(x2) |
forallx;,x, € D and all i € [0,1]. It is called concave, if

| F(@=h)xi +hx2) > (L=h) (1) +h () |

X1 X2 X1 X2
convex concave
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Concave Function*

F(L=h)xi+hx) > (1=h) f(x1) + 5 f(x2)

F(A=h)x; +hx3)

(A=) ) +hf(x2) 7

X2
(1—h)x1+hxy

Secant is below the graph of function f.

Strictly Convex and Concave Functions

Function f is strictly convex in domain D C R", if D is convex and

F(A—R)yxi+hx2) < (1—h) f(xa) + I f(x2)

for all x,x, € D with x; # xp and all h € (0,1).

Function f is strictly concave in domain D C IR", if D is convex and

fF((A=h)x1+hxp) > (1 —h)f(x1)+hf(x2)

for all x;,x € D with x; # xp and all h € (0,1).
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Example — Linear Function Example — Quadratic Univariate Function
Leta € R" be fixed. Function f(x) = x? is strictly convex:
Then f(x) = a' - xis a linear map and we find:
f(A=h)x+hy) = [(1=h) f(x) + 1 f(y)]
fF(A=h)yxi+hx)) =a - ((1—-h)x; +hxp)

=(1-h)a" x;+ha-x
=(1=h) f(x1) +hf(x2)
That is, every linear function is both concave and convex.

However, a linear function is neither strictly concave nor strictly convex,
as the inequality is never strict.

—h) x2+hy2}
+2(1 —hhxy + K y* — (1 —h)x®> —hy?
mhxy —h(1—h)y*

=((1-mx+hy)*-[(
(1—h)%x2
=—h(1—h)x®4+2(1—
=—h(1-h)(x-y)?
<0 forx#yand0<h <1.

Thus

f(A=m)x+hy) <(1—h) f(x)+hfly)
forallx #yand0 < h <1,
i.e., f(x) = x? is strictly convex, as claimed.
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Properties

> If f(x) is (strictly) convex, then — f(x) is (strictly) concave
(and vice versa).

» If f1(x),..., fr(x) are convex (concave) functions and
a1,...,0 >0, then

g(x) = asfi(x) +

is also convex (concave).

e+ agfi(x)

> If (at least) one of the functions f;(x) is strictly convex (strictly
concave), then g(x) is strictly convex (strictly concave).

Properties

For a differentiable functions the following holds:
» Function f is concave if and only if

[ £60 — £(x0) < VS (x0) - (x =) |

i.e., the function graph is always below the tangent.

~

X0

» Function f is strictly concave if and only if

| f(x) = f(x0) < Vf(x0) - (x—x0) forallx # xo |

.

X0

» Function f is convex if and only if

[ £60) — £(x0) > Vi (x0) - (x =) |

(Analogous for strictly convex functions.)
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Univariate Functions™

For two times differentiable functions we have

fconvex & f’(x)>0
fconcave & f"(x) <0

forall x € Df
forall x € Df

Derivative f'(x) is
monotonically decreasing,

thus f”(x) < 0.

Univariate Functions™

For two times differentiable functions we have

f strictly convex < f"(x) >0
f strictly concave < f(x) <0

forall x € Df
for all x € Df
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Example — Convex Function™

Exponential function:

x)=¢*>0 forallx € R

(
exp(x) is (strictly) convex.

/ '

Example — Concave Function®

Logarithm function:

£(x) = Inx) T
fx) =1

f'(x)=—% <0 forallx >0

(x> 0)

Y

In(x) is (strictly) concave.
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Locally Convex Functions™

A function f can be convex in some interval and concave in some other
interval.

For two times continuously differentiable functions (i.e., when f”(x) is
continuous) we can use the following procedure:

1. Compute second derivative f”(x).
2. Determine all roots of f”(x).
3. We thus obtain intervals where f”(x) does not change sign.

4. Select appropriate points x; in each interval and determine the
sign of f”(x;).

Locally Concave Function*

In which region is f(x) = 2x3 — 12x? + 18 x — 1 concave?

We have to solve inequality f”'(x) < 0.
1. f'(x) =12x—24

2. Roots: 12x—24=0 = x=2

3. Obtain 2 intervals:  (—o0,2] and [2, o0)

4. Sign of f”(x) at appropriate points in each interval:
£7(0) = —24 < 0and f"(4) =24 > 0.

5. f'(x) cannot change sign in each interval: f”(x) < 0in (—oo,2]

Function f(x) is concave in (—oo0,2].
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Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if
every restriction of its domain to a straight line results in a convex
univariate function. That is:

Function f: D C R" — R is convex
if and only if
g(t) = f(xo +t- h) is convex

for all xo € D and
all non-zero h € R".

Quadratic Form

Let A be a symmetric matrix
and ga (x) = x" Ax be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its
eigenvectors, then A becomes a diagonal matrix with the eigenvalues
of A as its elements:

qA(X) = )le% + )\zx% + 4 )\nle .

» Itis convex if all eigenvalues A; > 0
as it is the sum of convex functions.

» ltis concaveifall A; <0
as it is the negative of a convex function.

» It is neither convex nor concave if we have eigenvalues with
Ai>0and A; < 0.
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Quadratic Form

We find for a quadratic form g,

» strictly convex & positive definite

» convex & positive semidefinite
» strictly concave < negative definite

» concave & negative semidefinite
» neither & indefinite

We can determine the definiteness of A by means of
» the eigenvalues of A, or
» the (leading) principle minors of A.

Example — Quadratic Form

2 1 0
letA=|1 3 -1 Leading principle minors:
0o -1 2
A1=2 >0
21
Ay = =5 >0
13
2 1 0
Az=1]A|=]1 3 -1|=8 >0
0o -1 2

A is thus positive definite.
Quadratic form g4 is strictly convex.
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Example — Quadratic Form

-1 0 1
lLetA=| 0 -4 2 Principle Minors:
1 2 =2
A= -1 Ay =—4 Az = -2
1 0 -1 1 —4 2
A1y = =4 Aj5= = = =
1,2 _ 13 1 2 23 » o
-1 0 1 A =0
A1,2,3 =10 —4 21=0 Ai,]' Z 0
1 2 -2 A1p3 <0

A is thus negative semidefinite.
Quadratic form g4 is concave (but not strictly concave).

Concavity of Differentiable Functions

Le f: D C R" — R with Taylor series expansion
f(xo+h) = f(x0) + Vf(xo) -h+ 3 h" - Hf(xo) -h+ O(||h[)

Hessian matrix H f(xo) determines the concavity or convexity of f
around expansion point xg.

» Hf(xo) positive definite = f strictly convex around xo

» Hf(xo) negative definite = f strictly concave around xg

» H(x) positive semidefinite forall x € D < f convexin D
» H¢(x) negative semidefinite forall x € D < f concave in D
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Recipe — Strictly Convex

1. Compute Hessian matrix

frax (X)) fraxn(X) frax, (x)
Hf(x) _ szx:l (%) szx:z(X) fxpry:,(x)
frae () frn () Fraxn (x)

2. Compute all leading principle minors H;.

3.

» f strictly convex < allHy >0 for (almost) all x € D
» f strictly concave < all (—1)FHy > 0 for (almost) all x € D
[ (—1)*Hi > 0implies: Hy, H3,... < 0and Hy, Hy,... > 0]

4. Otherwise f is neither strictly convex nor strictly concave.

Recipe — Convex

1. Compute Hessian matrix

fxlxl(x) fxlxz (x) fX1Xn (X)
Hf(x) _ szxT (%) szx.z (x) : f)rzx,f (x)
frr (X)) frn(X) Frara (x)
2. Compute all principle minors Hj,, ;.
(Only required if det(Hy) = 0, see below)
3. » feconvex <« allH, ; >0 forall x € D.

» f concave <« all (—1)¥H; ; >0 forallx € D.

1 yeeerd

4. Otherwise f is neither convex nor concave.
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Recipe — Convex Il

Computation of all principle minors can be avoided if det(Hf) # 0.
Then a function is either strictly convex/concave (and thus
convex/concave) or neither convex nor concave.

In particular we have the following recipe:
1. Compute Hessian matrix Hz(x).
2. Compute all leading principle minors H;.
3. Check if det(Hy) # 0.
4. Check for strict convexity or concavity.

5. If det(Hy) # 0 and f is neither strictly convex nor concave, then f
is neither convex nor concave, either.

Example — Strict Convexity

Is function f (strictly) concave or convex?

fle,y) =x*+x2 —2xy+1?

12x%2+2 -2
1. Hessian matrix: Hy(x) = ( * 2+ ) >

2. Leading principle minors:
Hy=12x2+2 >0

H, = [Hf(x)] =24x* >0 forallx #0.

3. All leading principle minors > 0 for almost all x
= f is strictly convex. (and thus convex, too)
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Example — Cobb-Douglas Function

Let f(x,y) = x*yP witha, > 0anda + S < 1,
and D = {(x,y): x,y > 0}.
Hessian matrix at x:
a(w—1)x*2yP
Hf(x)_(< ) x 2y

(Xﬁ xa—lyﬁ—l
Dlﬁ xw—ly[j—l

B(p—1)xtyf~2

Principle Minors:

H= a (a—1)x2%P <0
e —— N —
>0 <0 >0
<0

Hy= p (B—1) x'y"2
N S N —

>0 <0 >0

Example — Cobb-Douglas Function

Hip = [Hy(x)]
= a(a—1)x* 2P B(B—1) x"yP~2 — (apx*TyP1)

— lX(Dé _ 1) ‘B(‘B _ 1) x2a—2y2ﬂ—2 _ “2152 x2a’—2y2ﬁ—2
= apl(a —1)(B—1) — ap|x* 2?2
— Dcﬁ (1 —a— ﬁ) xZu—ZyZﬂ—2 >0

\EEJ =0 =0

H; <0 and H, <0,and Hy, > 0 forall (x,y) € D.
f(x,y) thus is concave in D.

ForO <a,f <landa+ B <1we even find:
H; = H; <0 and Hy = [H(x)| > 0 foralmostall (x,y) € D.

f(x,y) is then strictly concave.
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Lower Level Sets of Convex Functions

Assume that f is convex.
Then the lower level sets of f

{x€Ds: f(x) <c}

are convex.

)
&

Letxi,xa € {x € Ds: f(x) <c},
ie., f(Xl),f(Xz) <ec.
Then fory = (1 — h)xq + hx
where h € [0,1] we find
f(y) = fF((1=h)x1 + hxa)
< (I=h) fa) + 1 f(x2)
<(l1—-h)c+hc=c

Thatis, y € {x € Dy: f(x) < c}, too.

Upper Level Sets of Concave Functions

Assume that f is concave.
Then the upper level sets of f

{x € Df: f(x) > c}

are convex.

upper level set lower level set
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Extremum and Monotone Transformation

Let T: R — R be a strictly monotonically increasing function.

If x* is @ maximum of f, then x* is also a maximum of T o f.

As x* is a maximum of f, we have
f(x*) > f(x) for all x.
As T is strictly monotonically increasing,we have
T(x1) > T(xp) falls x1 > xp.
Thus we find
(Tof)(x*) =T(f(x)) > T(f(x) = (To f)(x) forall x,
i.e., x* is a maximumof T o f.

As T is one-to-one we also get the converse statement:
If x* is @ maximum of T o f, then it also is a maximum of f.

Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T preserves the
extrema of f.

Transformation T also preserves the level sets of f:

floy) == -y T(f(x,y)) = exp(—x2 — y?)
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Quasi-Convex and Quasi-Concave

Function f is called quasi-convex in D C R", if D is convex and every
lower level set {x € Dy: f(x) < c} is convex.

Function f is called quasi-concave in D C R", if D is convex and
every upper level set {x € D¢: f(x) > c} is convex.

Convex and Quasi-Convex

Every concave (convex) function also is quasi-concave (and
quasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let T be a strictly monotonically increasing function.
If function f(x) is concave (convex), then T o f is quasi-concave (and
quasi-convex, resp.).

Function g(x,y) = e~*" %" is quasi-concave, as f(x,y) = —x2 —12is
concave and T(x) = e is strictly monotonically increasing.
However, g = T o f is not concave.
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A Weaker Condition

The notion of quasi-convex is weaker than that of convex in the sense
that every convex function also is quasi-convex but not vice versa.
There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation
that a couple of propositions still hold if “convex” is replaced by
“quasi-convex”.

In this way we get a generalization of a theorem, where a stronger
condition is replaced by a weaker one.

Quasi-Convex and Quasi-Concave Il

» Function f is quasi-convex if and only if

| £((1 = hxi +Ixa) < max{f(x1), f(x2)} |

for all x1,xp and h € [0,1].

» Function f is quasi-concave if and only if

| (= )xi +1xa) > min{f(x), ()} |

for all x1,xp and h € [0,1].

X2 X1 X1 X2
quasi-convex quasi-concave
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Strictly Quasi-Convex and Quasi-Concave

» Function f is called strictly quasi-convex if

| (=i + o) < max{£(x0), f)} |

for all x1, X, with X1 # x2,and h € (0,1).

» Function f is called strictly quasi-concave if

| £(( = h)xi +1x2) > min{f(x), f(x2)} |

for all xq, x2, with x; # xp, and i € (0,1).

Quasi-convex and Quasi-Concave lll

For a differentiable function f we find:
» Function f is quasi-convex if and only if

| f)<flxo) = Vf(x):-(x—x) <0 |

» Function f is quasi-concave if and only if

[£60 = flxa) = Vf(x)-(x—x) 20|
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Summary

monotone function

convex set

convex and concave function

convexity and definiteness of quadratic form
minors of Hessian matrix

vvyvyvyyvyy

quasi-convex and quasi-concave function
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