Chapter 13

Convex and Concave

Josef Leydold - Foundations of Mathematics - WS 2025/26

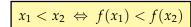
13 - Convex and Concave - 1 / 45

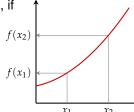
Monotone Functions*

Function f is called **monotonically increasing**, if

$$x_1 \le x_2 \implies f(x_1) \le f(x_2)$$

It is called strictly monotonically increasing, if



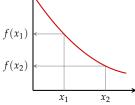


Function f is called **monotonically decreasing**, if

$$x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$$

It is called strictly monotonically decreasing, if

$$x_1 < x_2 \iff f(x_1) > f(x_2)$$



Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 2 / 45

Monotone Functions*

For differentiable functions we have

 $\begin{array}{lll} f \text{ monotonically increasing} & \Leftrightarrow & f'(x) \geq 0 & \text{ for all } x \in D_f \\ f \text{ monotonically decreasing} & \Leftrightarrow & f'(x) \leq 0 & \text{ for all } x \in D_f \end{array}$

f strictly monotonically increasing $\Leftarrow f'(x) > 0$ for all $x \in D_f$ f strictly monotonically decreasing $\Leftarrow f'(x) < 0$ for all $x \in D_f$

Function $f:(0,\infty), x\mapsto \ln(x)$ is strictly monotonically increasing, as

$$f'(x) = (\ln(x))' = \frac{1}{x} > 0$$
 for all $x > 0$

Locally Monotone Functions*

A function f can be monotonically increasing in some interval and decreasing in some other interval.

For *continuously* differentiable functions (i.e., when f'(x) is continuous) we can use the following procedure:

- **1.** Compute first derivative f'(x).
- **2.** Determine all roots of f'(x).
- **3.** We thus obtain intervals where f'(x) does not change sign.
- **4.** Select appropriate points x_i in each interval and determine the sign of $f'(x_i)$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 4 / 45

Example – Locally Monotone Functions*

In which region is function $f(x) = 2x^3 - 12x^2 + 18x - 1$ monotonically increasing?

We have to solve inequality $f'(x) \ge 0$:

- 1. $f'(x) = 6x^2 24x + 18$
- **2.** Roots: $x^2 4x + 3 = 0 \implies x_1 = 1, x_2 = 3$
- **3.** Obtain 3 intervals: $(-\infty, 1]$, [1, 3], and $[3, \infty)$
- **4.** Sign of f'(x) at appropriate points in each interval: f'(0) = 3 > 0, f'(2) = -1 < 0, and f'(4) = 3 > 0.
- **5.** f'(x) cannot change sign in each interval: $f'(x) \ge 0$ in $(-\infty, 1]$ and $[3, \infty)$.

Function f(x) is monotonically increasing in $(-\infty, 1]$ and in $[3, \infty)$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 5 / 45

Monotone and Inverse Function

If *f* is *strictly monotonically increasing*, then

$$x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$$

immediately implies

$$x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$$

That is, *f* is *one-to-one*.

So if f is onto and strictly monotonically increasing (or decreasing), then f is **invertible**.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 6 / 45

Convex Set

A set $D \subseteq \mathbb{R}^n$ is called **convex**, if for any two points $\mathbf{x}, \mathbf{y} \in D$ the straight line segment between these points also belongs to D, i.e.,

$$(1-h) \mathbf{x} + h \mathbf{y} \in D$$
 for all $h \in [0,1]$, and $\mathbf{x}, \mathbf{y} \in D$.

convex:

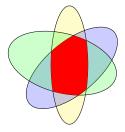
not convex:

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 7 / 45

Intersection of Convex Sets

Let S_1, \ldots, S_k be convex subsets of \mathbb{R}^n . Then their *intersection* $S_1 \cap \ldots \cap S_k$ is also convex.



The union of convex sets need not be convex.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 8 / 45

Example – Half-Space

Let $\mathbf{p} \in \mathbb{R}^n$ and $m \in \mathbb{R}$ be fixed, $\mathbf{p} \neq 0$. Then

$$H = \{ \mathbf{x} \in \mathbb{R}^n \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} = m \}$$

is a so called **hyper-plane** which partitions the \mathbb{R}^n into two **half-spaces**

$$H_{+} = \{ \mathbf{x} \in \mathbb{R}^{n} \colon \mathbf{p}^{\mathsf{T}} \cdot \mathbf{x} \ge m \} ,$$

$$H_{-} = \{ \mathbf{x} \in \mathbb{R}^{n} \colon \mathbf{p}^{\mathsf{T}} \cdot \mathbf{x} \le m \} .$$

Sets H, H_+ and H_- are convex.

Let ${\bf x}$ be a vector of goods, ${\bf p}$ the vector of prices and ${\bf m}$ the budget. Then the budget set is convex.

$$\{\mathbf{x} \in \mathbb{R}^n \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} \le m, \mathbf{x} \ge 0\}$$

= $\{\mathbf{x} \colon \mathbf{p}^\mathsf{T} \cdot \mathbf{x} \le m\} \cap \{\mathbf{x} \colon x_1 \ge 0\} \cap \ldots \cap \{\mathbf{x} \colon x_n \ge 0\}$

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 9 / 45

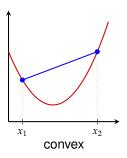
Convex and Concave Functions

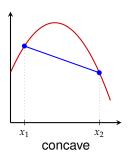
Function f is called **convex** in domain $D \subseteq \mathbb{R}^n$, if D is *convex* and

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \le (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $x_1, x_2 \in D$ and all $h \in [0,1]$. It is called **concave**, if

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \ge (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$



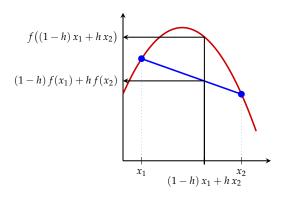


Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 10 / 45

Concave Function*

$$f((1-h)x_1 + hx_2) \ge (1-h)f(x_1) + hf(x_2)$$



Secant is below the graph of function f.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 11 / 45

Strictly Convex and Concave Functions

Function f is **strictly convex** in domain $D \subseteq \mathbb{R}^n$, if D is *convex* and

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) < (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in D$ with $\mathbf{x}_1 \neq \mathbf{x}_2$ and all $h \in (0,1)$.

Function f is **strictly concave** in domain $D \subseteq \mathbb{R}^n$, if D is *convex* and

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) > (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in D$ with $\mathbf{x}_1 \neq \mathbf{x}_2$ and all $h \in (0,1)$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 12 / 45

Example – Linear Function

Let $\mathbf{a} \in \mathbb{R}^n$ be fixed.

Then $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} \cdot \mathbf{x}$ is a linear map and we find:

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) = \mathbf{a}^\mathsf{T} \cdot ((1-h)\mathbf{x}_1 + h\mathbf{x}_2)$$
$$= (1-h)\mathbf{a}^\mathsf{T} \cdot \mathbf{x}_1 + h\mathbf{a}^\mathsf{T} \cdot \mathbf{x}_2$$
$$= (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

That is, every linear function is both concave and convex.

However, a linear function is neither strictly concave nor strictly convex, as the inequality is never strict.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 13 / 45

Example – Quadratic Univariate Function

Function $f(x) = x^2$ is *strictly convex*:

$$f((1-h)x + hy) - [(1-h)f(x) + hf(y)]$$

$$= ((1-h)x + hy)^2 - [(1-h)x^2 + hy^2]$$

$$= (1-h)^2x^2 + 2(1-h)hxy + h^2y^2 - (1-h)x^2 - hy^2$$

$$= -h(1-h)x^2 + 2(1-h)hxy - h(1-h)y^2$$

$$= -h(1-h)(x-y)^2$$

$$< 0 \text{ for } x \neq y \text{ and } 0 < h < 1.$$

Thus

$$f((1-h)x + hy) < (1-h)f(x) + hf(y)$$

for all $x \neq y$ and 0 < h < 1, i.e., $f(x) = x^2$ is strictly convex, as claimed.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 14 / 45

Properties

- ▶ If $f(\mathbf{x})$ is (strictly) *convex*, then $-f(\mathbf{x})$ is (strictly) *concave* (and vice versa).
- ▶ If $f_1(\mathbf{x}), \dots, f_k(\mathbf{x})$ are *convex* (concave) functions and $\alpha_1, \ldots, \alpha_k > 0$, then

$$g(\mathbf{x}) = \alpha_1 f_1(\mathbf{x}) + \cdots + \alpha_k f_k(\mathbf{x})$$

is also convex (concave).

▶ If (at least) one of the functions $f_i(x)$ is *strictly convex* (strictly concave), then g(x) is strictly convex (strictly concave).

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 15 / 45

Properties

For a differentiable functions the following holds:

► Function *f* is **concave** if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) \le \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

i.e., the function graph is always below the tangent.

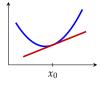
► Function *f* is **strictly concave** if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) < \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$
 for all $\mathbf{x} \neq \mathbf{x}_0$

► Function *f* is **convex** if and only if

$$f(\mathbf{x}) - f(\mathbf{x}_0) \ge \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

(Analogous for strictly convex functions.)



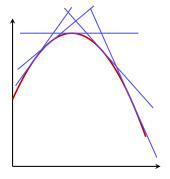
Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 16 / 45

Univariate Functions*

For two times differentiable functions we have

$$\begin{array}{lll} f \ \text{convex} & \Leftrightarrow & f''(x) \geq 0 & \text{ for all } x \in D_f \\ f \ \text{concave} & \Leftrightarrow & f''(x) \leq 0 & \text{ for all } x \in D_f \end{array}$$



Derivative f'(x) is monotonically decreasing,

thus $f''(x) \leq 0$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 17 / 45

Univariate Functions*

For two times differentiable functions we have

f strictly convex $\Leftarrow f''(x) > 0$ for all $x \in D_f$ f strictly concave $\Leftarrow f''(x) < 0$ for all $x \in D_f$

Example – Convex Function*

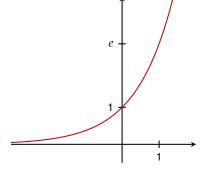
Exponential function:

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f''(x) = e^{x} > 0 \text{ for all } x \in \mathbb{R}$$

 $\exp(x)$ is (strictly) convex.



Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 19 / 45

Example – Concave Function*

Logarithm function: (x > 0)

$$f(x) = \ln(x)$$

$$f'(x) = \frac{1}{x}$$

$$f''(x) = -\frac{1}{x^2} < 0 \text{ for all } x > 0$$

ln(x) is (strictly) concave.



Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 20 / 45

Locally Convex Functions*

A function f can be convex in some interval and concave in some other interval.

For two times *continuously* differentiable functions (i.e., when f''(x) is continuous) we can use the following procedure:

- **1.** Compute second derivative f''(x).
- **2.** Determine all roots of f''(x).
- **3.** We thus obtain intervals where f''(x) does not change sign.
- **4.** Select appropriate points x_i in each interval and determine the sign of $f''(x_i)$.

Locally Concave Function*

In which region is $f(x) = 2x^3 - 12x^2 + 18x - 1$ concave?

We have to solve inequality $f''(x) \leq 0$.

- 1. f''(x) = 12x 24
- **2.** Roots: $12x 24 = 0 \implies x = 2$
- **3.** Obtain 2 intervals: $(-\infty, 2]$ and $[2, \infty)$
- **4.** Sign of f''(x) at appropriate points in each interval: f''(0) = -24 < 0 and f''(4) = 24 > 0.
- **5.** f''(x) cannot change sign in each interval: $f''(x) \le 0$ in $(-\infty, 2]$

Function f(x) is concave in $(-\infty, 2]$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

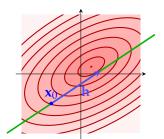
13 - Convex and Concave - 22 / 45

Univariate Restrictions

Notice, that by definition a (multivariate) function is convex if and only if every restriction of its domain to a straight line results in a convex univariate function. That is:

Function $f\colon D\subset\mathbb{R}^n\to\mathbb{R}$ is convex if and only if $g(t)=f(\mathbf{x}_0+t\cdot\mathbf{h})$ is convex

for all $\mathbf{x}_0 \in D$ and all non-zero $\mathbf{h} \in \mathbb{R}^n$.



Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 23 / 45

Quadratic Form

Let **A** be a symmetric matrix and $q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ be the corresponding quadratic form.

Matrix A can be diagonalized, i.e., if we use an orthonormal basis of its eigenvectors, then A becomes a diagonal matrix with the eigenvalues of A as its elements:

$$q_{\mathbf{A}}(\mathbf{x}) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2.$$

- lt is convex if all eigenvalues $\lambda_i \geq 0$ as it is the sum of convex functions.
- lt is concave if all $\lambda_i \leq 0$ as it is the negative of a convex function.
- It is neither convex nor concave if we have eigenvalues with $\lambda_i > 0$ and $\lambda_i < 0$.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 24 / 45

Quadratic Form

We find for a quadratic form q_A :

- ▶ strictly convex ⇔ positive definite
- ► convex ⇔ positive semidefinite
- ▶ strictly concave ⇔ negative definite
- ► concave ⇔ negative semidefinite
- ▶ neither ⇔ indefinite

We can determine the definiteness of A by means of

- ► the eigenvalues of A, or
- ► the (leading) principle minors of A.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 25 / 45

Example – Quadratic Form

Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
. Leading principle minors:

$$A_1 = 2 > 0$$

$$A_2 = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5 > 0$$

$$A_3 = |\mathbf{A}| = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{vmatrix} = 8 > 0$$

A is thus positive definite.

Quadratic form q_A is *strictly convex*.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 26 / 45

Example – Quadratic Form

Let
$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{pmatrix}$$
. Principle Minors:

$$A_{1} = -1 A_{2} = -4 A_{3} = -2$$

$$A_{1,2} = \begin{vmatrix} -1 & 0 \\ 0 & -4 \end{vmatrix} = 4 A_{1,3} = \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = 1 A_{2,3} = \begin{vmatrix} -4 & 2 \\ 2 & -2 \end{vmatrix} = 4$$

$$A_{1,2,3} = \begin{vmatrix} -1 & 0 & 1 \\ 0 & -4 & 2 \\ 1 & 2 & -2 \end{vmatrix} = 0 A_{i,j} \ge 0$$

$$A_{1,2,3} \le 0$$

A is thus negative semidefinite.

Quadratic form q_A is *concave* (but not strictly concave).

Concavity of Differentiable Functions

Le $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ with Taylor series expansion

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot \mathbf{h} + \frac{1}{2} \mathbf{h}^\mathsf{T} \cdot \mathbf{H}_f(\mathbf{x}_0) \cdot \mathbf{h} + \mathcal{O}(\|\mathbf{h}\|^3)$$

Hessian matrix $\mathbf{H}_f(\mathbf{x}_0)$ determines the concavity or convexity of f around expansion point \mathbf{x}_0 .

- $ightharpoonup \mathbf{H}_f(\mathbf{x}_0)$ positive definite \Rightarrow f strictly convex around \mathbf{x}_0
- ▶ $\mathbf{H}_f(\mathbf{x}_0)$ negative definite \Rightarrow f strictly concave around \mathbf{x}_0
- ▶ $\mathbf{H}_f(\mathbf{x})$ positive semidefinite for all $\mathbf{x} \in D$ \Leftrightarrow f convex in D
- ▶ $\mathbf{H}_f(\mathbf{x})$ negative semidefinite for all $\mathbf{x} \in D$ \Leftrightarrow f concave in D

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 28 / 45

Recipe – Strictly Convex

1. Compute Hessian matrix

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{pmatrix}$$

- **2.** Compute all *leading principle minors* H_i .
- 3
- ▶ f strictly convex \Leftrightarrow all $H_k > 0$ for (almost) **all** $\mathbf{x} \in D$
- lacksquare f strictly concave \Leftrightarrow all $(-1)^k H_k > 0$ for (almost) **all** $\mathbf{x} \in D$

[$(-1)^k H_k > 0$ implies: $H_1, H_3, \ldots < 0$ and $H_2, H_4, \ldots > 0$]

4. Otherwise f is *neither* **strictly** convex *nor* strictly concave.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 29 / 45

Recipe - Convex

1. Compute Hessian matrix

$$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} f_{x_1x_1}(\mathbf{x}) & f_{x_1x_2}(\mathbf{x}) & \cdots & f_{x_1x_n}(\mathbf{x}) \\ f_{x_2x_1}(\mathbf{x}) & f_{x_2x_2}(\mathbf{x}) & \cdots & f_{x_2x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1}(\mathbf{x}) & f_{x_nx_2}(\mathbf{x}) & \cdots & f_{x_nx_n}(\mathbf{x}) \end{pmatrix}$$

- **2.** Compute all *principle minors* $H_{i_1,...,i_k}$. (Only required if $\det(\mathbf{H}_f) = 0$, see below)
- $\textbf{3.} \hspace{0.1cm} \blacktriangleright \hspace{0.1cm} f \hspace{0.1cm} \textit{convex} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} \text{all} \hspace{0.1cm} H_{i_1,\ldots,i_k} \geq 0 \hspace{1cm} \text{for all } \textbf{x} \in D.$
 - ▶ f concave \Leftrightarrow all $(-1)^k H_{i_1,...,i_k} \ge 0$ for all $\mathbf{x} \in D$.
- **4.** Otherwise f is *neither* convex *nor* concave.

Recipe - Convex II

Computation of *all* principle minors can be avoided if $\det(\mathbf{H}_f) \neq 0$. Then a function is either strictly convex/concave (and thus convex/concave) or neither convex nor concave.

In particular we have the following recipe:

- **1.** Compute Hessian matrix $\mathbf{H}_f(\mathbf{x})$.
- **2.** Compute all *leading principle minors* H_i .
- **3.** Check if $det(\mathbf{H}_f) \neq 0$.
- 4. Check for strict convexity or concavity.
- **5.** If $det(\mathbf{H}_f) \neq 0$ and f is neither strictly convex nor concave, then f is neither convex nor concave, either.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 31 / 45

Example – Strict Convexity

Is function f (strictly) concave or convex?

$$f(x,y) = x^4 + x^2 - 2xy + y^2$$

- **1.** Hessian matrix: $\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} 12x^2 + 2 & -2 \\ -2 & 2 \end{pmatrix}$
- 2. Leading principle minors:

$$H_1 = 12 x^2 + 2$$
 > 0
 $H_2 = |\mathbf{H}_f(\mathbf{x})| = 24 x^2$ > 0 for all $x \neq 0$.

3. All leading principle minors > 0 for almost all \mathbf{x} $\Rightarrow f$ is *strictly convex*. (and thus convex, too)

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 32 / 45

Example – Cobb-Douglas Function

Let
$$f(x,y)=x^{\alpha}y^{\beta}$$
 with $\alpha,\beta\geq 0$ and $\alpha+\beta\leq 1$, and $D=\{(x,y)\colon x,y\geq 0\}.$

Hessian matrix at x:

$$\mathbf{H}_f(\mathbf{x}) = \begin{pmatrix} \alpha(\alpha-1) \, x^{\alpha-2} y^{\beta} & \alpha\beta \, x^{\alpha-1} y^{\beta-1} \\ \alpha\beta \, x^{\alpha-1} y^{\beta-1} & \beta(\beta-1) \, x^{\alpha} y^{\beta-2} \end{pmatrix}$$

Principle Minors:

$$H_1 = \underbrace{\alpha}_{>0} \underbrace{(\alpha - 1)}_{<0} \underbrace{x^{\alpha - 2} y^{\beta}}_{>0} \quad \leq 0$$

$$H_2 = \underbrace{\beta}_{\geq 0} \underbrace{(\beta - 1)}_{\leq 0} \underbrace{x^{\alpha} y^{\beta - 2}}_{\geq 0} \quad \leq 0$$

Example – Cobb-Douglas Function

$$\begin{split} H_{1,2} &= |\mathbf{H}_{f}(\mathbf{x})| \\ &= \alpha(\alpha - 1) \, x^{\alpha - 2} y^{\beta} \cdot \beta(\beta - 1) \, x^{\alpha} y^{\beta - 2} - (\alpha \beta \, x^{\alpha - 1} y^{\beta - 1})^{2} \\ &= \alpha(\alpha - 1) \, \beta(\beta - 1) \, x^{2\alpha - 2} y^{2\beta - 2} - \alpha^{2} \beta^{2} \, x^{2\alpha - 2} y^{2\beta - 2} \\ &= \alpha \beta [(\alpha - 1)(\beta - 1) - \alpha \beta] x^{2\alpha - 2} y^{2\beta - 2} \\ &= \underbrace{\alpha \beta}_{\geq 0} \underbrace{(1 - \alpha - \beta)}_{\geq 0} \underbrace{x^{2\alpha - 2} y^{2\beta - 2}}_{\geq 0} \geq 0 \end{split}$$

 $H_1 \leq 0$ and $H_2 \leq 0$, and $H_{1,2} \geq 0$ for all $(x,y) \in D$. f(x,y) thus is *concave* in D.

For $0 < \alpha, \beta < 1$ and $\alpha + \beta < 1$ we even find: $H_1 = H_1 < 0$ and $H_2 = |\mathbf{H}_f(\mathbf{x})| > 0$ for almost all $(x,y) \in D$. f(x,y) is then *strictly concave*.

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 34 / 45

Lower Level Sets of Convex Functions

Assume that f is *convex*. Then the **lower level sets** of f

$$\{\mathbf{x} \in D_f : f(\mathbf{x}) \le c\}$$

are convex.

Let $\mathbf{x}_1, \mathbf{x}_2 \in {\mathbf{x} \in D_f : f(\mathbf{x}) \le c}$, i.e., $f(\mathbf{x}_1), f(\mathbf{x}_2) \le c$.

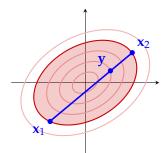
Then for $\mathbf{y} = (1 - h)\mathbf{x}_1 + h\mathbf{x}_2$ where $h \in [0, 1]$ we find

$$f(\mathbf{y}) = f((1-h)\mathbf{x}_1 + h\mathbf{x}_2)$$

$$\leq (1-h)f(\mathbf{x}_1) + hf(\mathbf{x}_2)$$

$$\leq (1-h)c + hc = c$$

That is, $\mathbf{y} \in {\mathbf{x} \in D_f : f(\mathbf{x}) \le c}$, too.



Josef Leydold - Foundations of Mathematics - WS 2025/26

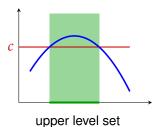
13 - Convex and Concave - 35 / 45

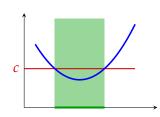
Upper Level Sets of Concave Functions

Assume that f is *concave*. Then the **upper level sets** of f

$$\{\mathbf{x} \in D_f \colon f(\mathbf{x}) \ge c\}$$

are convex.





lower level set

Extremum and Monotone Transformation

Let $T: \mathbb{R} \to \mathbb{R}$ be a *strictly monotonically increasing* function.

If \mathbf{x}^* is a *maximum* of f, then \mathbf{x}^* is also a maximum of $T \circ f$.

As x^* is a *maximum* of f, we have

$$f(\mathbf{x}^*) \ge f(\mathbf{x})$$
 for all \mathbf{x} .

As T is strictly monotonically increasing, we have

$$T(x_1) > T(x_2)$$
 falls $x_1 > x_2$.

Thus we find

$$(T \circ f)(\mathbf{x}^*) = T(f(\mathbf{x}^*)) > T(f(\mathbf{x})) = (T \circ f)(\mathbf{x})$$
 for all \mathbf{x} ,

i.e., \mathbf{x}^* is a maximum of $T \circ f$.

As T is one-to-one we also get the converse statement: If \mathbf{x}^* is a *maximum* of $T \circ f$, then it also is a maximum of f.

Josef Leydold - Foundations of Mathematics - WS 2025/26

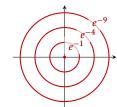
13 - Convex and Concave - 37 / 45

Extremum and Monotone Transformation

A strictly monotonically increasing Transformation T preserves the extrema of f.

Transformation T also preserves the level sets of f:

$$f(x,y) = -x^2 - y^2$$



$$T(f(x,y)) = \exp(-x^2 - y^2)$$

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 38 / 45

Quasi-Convex and Quasi-Concave

Function f is called **quasi-convex** in $D \subseteq \mathbb{R}^n$, if D is *convex* and every *lower level set* $\{\mathbf{x} \in D_f \colon f(\mathbf{x}) \le c\}$ is *convex*.

Function f is called **quasi-concave** in $D \subseteq \mathbb{R}^n$, if D is *convex* and every *upper level set* $\{\mathbf{x} \in D_f \colon f(\mathbf{x}) \ge c\}$ is *convex*.

Convex and Quasi-Convex

Every concave (convex) function also is quasi-concave (and quasi-convex, resp.).

However, a quasi-concave function need not be concave.

Let *T* be a strictly monotonically increasing function. If function $f(\mathbf{x})$ is *concave* (convex), then $T \circ f$ is *quasi-concave* (and quasi-convex, resp.).

Function $g(x,y) = e^{-x^2 - y^2}$ is quasi-concave, as $f(x,y) = -x^2 - y^2$ is concave and $T(x) = e^x$ is strictly monotonically increasing. However, $g = T \circ f$ is not concave.

Josef Levdold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 40 / 45

A Weaker Condition

The notion of quasi-convex is weaker than that of convex in the sense that every convex function also is quasi-convex but not vice versa. There are much more quasi-convex functions than convex ones.

The importance of such a weaker notions is based on the observation that a couple of propositions still hold if "convex" is replaced by "quasi-convex".

In this way we get a generalization of a theorem, where a stronger condition is replaced by a weaker one.

Josef Levdold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 41 / 45

Quasi-Convex and Quasi-Concave II

► Function *f* is *quasi-convex* if and only if

f is quasi-convex if and only if
$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \leq \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$$

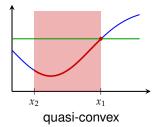
$$\mathbf{x}_2 \text{ and } h \in [0,1].$$

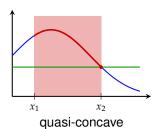
for all x_1, x_2 and $h \in [0, 1]$.

► Function *f* is *quasi-concave* if and only if

$$f((1-h)\mathbf{x}_1 + h\mathbf{x}_2) \ge \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$$

for all $\mathbf{x}_1, \mathbf{x}_2$ and $h \in [0, 1]$.





Strictly Quasi-Convex and Quasi-Concave

► Function *f* is called **strictly quasi-convex** if

$$\frac{f((1-h)\mathbf{x}_1+h\mathbf{x}_2)<\max\{f(\mathbf{x}_1),f(\mathbf{x}_2)\}}{\text{for all }\mathbf{x}_1,\mathbf{x}_2,\text{ with }\mathbf{x}_1\neq\mathbf{x}_2,\text{ and }h\in(0,1).}$$

► Function *f* is called **strictly quasi-concave** if

$$f((1-h)\mathbf{x}_1+h\mathbf{x}_2)>\min\{f(\mathbf{x}_1),f(\mathbf{x}_2)\}$$
 for all $\mathbf{x}_1,\mathbf{x}_2,$ with $\mathbf{x}_1\neq\mathbf{x}_2,$ and $h\in(0,1).$

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 43 / 45

Quasi-convex and Quasi-Concave III

For a differentiable function f we find:

► Function *f* is *quasi-convex* if and only if

$$f(\mathbf{x}) \le f(\mathbf{x}_0) \quad \Rightarrow \quad \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \le 0$$

► Function *f* is *quasi-concave* if and only if

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) \quad \Rightarrow \quad \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) \ge 0$$

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 44 / 45

Summary

- ► monotone function
- convex set
- convex and concave function
- convexity and definiteness of quadratic form
- minors of Hessian matrix
- quasi-convex and quasi-concave function

Josef Leydold - Foundations of Mathematics - WS 2025/26

13 - Convex and Concave - 45 / 45