Chapter 11

Taylor Series

First-Order Approximation

We want to approximate function f by some *simple* function.

Best possible approximation by a **linear function**:

$$f(x) \doteq f(x_0) + f'(x_0) (x - x_0)$$

 \doteq means "first-order approximation".

If we use this approximation, we calculate the value of the tangent at x instead of f.

Polynomials

We get a better approximation (i.e., with smaller approximation error) if we use a **polynomial** $P_n(x) = \sum_{k=0}^n a_k x^k$ of higher degree.

Ansatz:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + R_n(x)$$

Remainder term $R_n(x)$ gives the approximation error when we replace function *f* by approximation $P_n(x)$.

Idea:

Choose coefficients a_i such that the derivatives of f and P_n coincide at $x_0 = 0$ up to order n.

Derivatives

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = P_n(x)$$

$$\Rightarrow f(0) = a_0$$

$$f'(x) = a_1 + 2 \cdot a_2 x + \dots + n \cdot a_n x^{n-1} = P'_n(x)$$
$$\Rightarrow f'(0) = a_1$$

$$f''(x) = 2 \cdot a_2 + 3 \cdot 2 \cdot a_3 x + \dots + n \cdot (n-1) \cdot a_n x^{n-2} = P_n''(x)$$
$$\Rightarrow f''(0) = 2a_2$$

$$f'''(x) = 3 \cdot 2 \cdot a_3 + \dots + n \cdot (n-1) \cdot (n-2) \cdot a_n x^{n-3} = P'''_n(x)$$

$$\Rightarrow f'''(0) = 3! a_3$$

:

$$f^{(n)}(x) = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 \cdot a_n = P_n^{(n)}(x)$$

$$\Rightarrow f^{(n)}(0) = n! a_n$$

MacLaurin Polynomial

Thus we find for the coefficients of the polynomial

$$a_k = \frac{f^{(k)}(0)}{k!}$$

 $f^{(k)}(x_0)$ denotes the k-th derivatives of f at x_0 , $f^{(0)}(x_0) = f(x_0)$.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + R_{n}(x)$$

This polynomial is called the **MacLaurin polynomial** of degree n of f:

$$f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n$$

Taylor Polynomial

This idea can be generalized to arbitrary exansion points x_0 . We then get the **Taylor polynomial** of degree *n* of *f* around point x_0 :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$

Taylor Series

The (infinite) series

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

is called the **Taylor series** of f around x_0 .

If $\lim_{n\to\infty} R_n(x) = 0$, then the Taylor series converges to f(x).

We then say that we **expand** f into a *Taylor series* around **expansion point** x_0 .

Example – Exponential Function

Taylor series expansion of $f(x) = e^x$ around $x_0 = 0$: $f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots + \frac{f^{(n)}(0)}{n!} x^n + R_n(x)$

$$f(x) = e^{x} \implies f(0) = 1$$

$$f'(x) = e^{x} \implies f'(0) = 1$$

$$f''(x) = e^{x} \implies f''(0) = 1$$

$$f'''(x) = e^{x} \implies f'''(0) = 1$$

$$\vdots$$

$$f^{(n)}(x) = e^{x} \implies f^{(n)}(0) = 1$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

The Taylor series converges for all $x \in \mathbb{R}$.

Example – Exponential Function

Example – Logarithm

Taylor series expansion of $f(x) = \ln(1+x)$ around $x_0 = 0$: $f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots + \frac{f^{(n)}(0)}{n!} x^n + R_n(x)$ $\Rightarrow f(0) = 0$ $f(x) = \ln(1+x)$ $f'(x) = (1+x)^{-1}$ $\Rightarrow f'(0) = 1$ $f''(x) = -1 \cdot (1+x)^{-2}$ $\Rightarrow f''(0) = -1$ $f'''(x) = 2 \cdot 1 \cdot (1+x)^{-3}$ $\Rightarrow f'''(0) = 2!$ $f^{(n)}(x) = (-1)^{n-1}(n-1)!(1+x)^{-n+1} \Rightarrow f^{(n)}(0) = (-1)^{n-1}(n-1)!$ 0

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dotsb$$

The Taylor series converges for all $x \in (-1, 1)$.

Example – Logarithm

Radius of Convergence

Some Taylor series do not converge for all $x \in \mathbb{R}$. For example: $\ln(1+x)$

At least the following holds:

If a Taylor series converges for some x_1 with $|x_1 - x_0| = \rho$, then it also converges for all x with $|x - x_0| < \rho$.

The maximal value for ρ is called the **radius of convergence** of the Taylor series.

Example – Radius of Convergence

Approximation Error

The remainder term indicates the error of the approximation by a Taylor polynomial.

It can be estimated by means of Lagrange's form of the remainder:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

for some point $\xi \in (x, x_0)$.

If the Taylor series converges we have

$$R_n(x) = \mathcal{O}\left((x-x_0)^{n+1}\right)$$
 for $x \to x_0$

We say: the remainder is of big O of x^{n+1} as x tends to x_0 .

Big O Notation

Let f(x) and g(x) be two functions.

We write

$$f(x) = \mathcal{O}(g(x))$$
 as $x \to x_0$

if there exist reals numbers C and ε such that

$$|f(x)| < C \cdot |g(x)|$$

for all x with $|x - x_0| < \varepsilon$.

We say that f(x) is of big O of g(x) as x tends to x_0 .

Symbol $\mathcal{O}(\cdot)$ belongs to the family of *Bachmann-Landau* notations.

Some books use notation $f(x) \in \mathcal{O}(g(x))$ as $x \to x_0$

Impact of Order of Powers

The higher the order of a monomial is, the smaller is its contribution to the summation.

Important Taylor Series

f(x) MacLaurin Series ρ $\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ ∞ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ 1 $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ ∞ $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ ∞ $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots$ 1

Calculations with Taylor Series

Taylor series can be conveniently

- added (term by term)
- differentiated (term by term)
- integrated (term by term)
- multiplied
- divided
- substituted

Therefore Taylor series are also used for the *Definition* of some function.

For example:

$$\exp(x) := 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Example – Derivative

We get the first derivative of exp(x) by computing the derivative of its Taylor series:

$$(\exp(x))' = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\right)'$$
$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^2}{3!} + \frac{4x^3}{4!} + \cdots$$
$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
$$= \exp(x)$$

Example – Product

We get the MacLaurin series of $f(x) = x^2 \cdot e^x$ by multiplying the MacLaurin series of x^2 with the MacLaurin series of $\exp(x)$:

$$x^{2} \cdot e^{x} = x^{2} \cdot \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots\right)$$
$$= x^{2} + x^{3} + \frac{x^{4}}{2!} + \frac{x^{5}}{3!} + \frac{x^{6}}{4!} + \cdots$$

Example – Substitution

We get the MacLaurin series of $f(x) = \exp(-x^2)$ by substituting of $-x^2$ into the MacLaurin series of $\exp(x)$:

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \frac{u^{4}}{4!} + \cdots$$

$$e^{-x^{2}} = 1 + (-x^{2}) + \frac{(-x^{2})^{2}}{2!} + \frac{(-x^{2})^{3}}{3!} + \frac{(-x^{2})^{4}}{4!} + \cdots$$

$$= 1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \frac{x^{8}}{4!} - \cdots$$

Polynomials

The concept of Taylor series can be generalized to multivariate functions.

A polynomial of degree *n* in *two* variables has the form

$$P_n(x_1, x_2) = a_0$$

$$+ a_{10} x_1 + a_{11} x_2$$

$$+ a_{20} x_1^2 + a_{21} x_1 x_2 + a_{22} x_2^2$$

$$+ a_{30} x_1^3 + a_{31} x_1^2 x_2 + a_{32} x_1 x_2^2 + a_{33} x_2^3$$

$$\vdots$$

$$+ a_{n0} x_1^n + a_{n1} x_1^{n-1} x_2 + a_{n2} x_1^{n-2} x_2^2 + \dots + a_{nn} x_2^n$$

We choose coefficients a_{kj} such that all its partial derivatives in expansion point $\mathbf{x}_0 = 0$ up to order n coincides with the respective derivatives of f.

Taylor Polynomial of Degree 2

We obtain the coefficients as

$$a_{kj} = \frac{1}{k!} \binom{k}{j} \frac{\partial^k f(0)}{(\partial x_1)^{k-j} (\partial x_2)^j} \qquad k \in \mathbb{N}, \ j = 0, \cdots, k$$

In particular we find for the Taylor polynomial of degree 2 around $\mathbf{x}_0 = 0$

$$f(\mathbf{x}) = f(0) + f_{x_1}(0) x_1 + f_{x_2}(0) x_2 + \frac{1}{2} f_{x_1 x_1}(0) x_1^2 + f_{x_1 x_2}(0) x_1 x_2 + \frac{1}{2} f_{x_2 x_2}(0) x_2^2 + \cdots$$

Taylor Polynomial of Degree 2

Observe that the linear term can be written by means of the gradient:

$$f_{x_1}(0) x_1 + f_{x_2}(0) x_2 = \nabla f(0) \cdot \mathbf{x}$$

The quadratic term can be written by means of the Hessian matrix:

$$f_{x_1x_1}(0) x_1^2 + 2 f_{x_1x_2}(0) x_1 x_2 + f_{x_2x_2}(0) x_2^2 = \mathbf{x}^{\mathsf{T}} \cdot \mathbf{H}_f(0) \cdot \mathbf{x}$$

So we find for the Taylor polynomial of degree 2 around $\mathbf{x}_0 = 0$

$$f(\mathbf{x}) = f(0) + \nabla f(0) \cdot \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \cdot \mathbf{H}_{f}(0) \cdot \mathbf{x} + \mathcal{O}(\|\mathbf{x}\|^{3})$$

or in different notation

$$f(\mathbf{x}) = f(0) + f'(0)\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}f''(0)\mathbf{x} + \mathcal{O}(\|\mathbf{x}\|^3)$$

Example – Bivariate Function

Compute the Taylor polynomial of degree 2 around $\mathbf{x}_0 = 0$

$$f(x,y) = e^{x^2 - y^2} + x$$

$$f(x,y) = e^{x^2 - y^2} + x \qquad \Rightarrow f(0,0) = 1$$

$$f_x(x,y) = 2x e^{x^2 - y^2} + 1 \qquad \Rightarrow f_x(0,0) = 1$$

$$f_y(x,y) = -2y e^{x^2 - y^2} \qquad \Rightarrow f_y(0,0) = 0$$

$$f_{xx}(x,y) = 2e^{x^2 - y^2} + 4x^2 e^{x^2 - y^2} \qquad \Rightarrow f_{xx}(0,0) = 2$$

$$f_{xy}(x,y) = -4xy e^{x^2 - y^2} \qquad \Rightarrow f_{xy}(0,0) = 0$$

$$f_{yy}(x,y) = -2e^{x^2 - y^2} + 4y^2 e^{x^2 - y^2} \qquad \Rightarrow f_{yy}(0,0) = -2$$

gradient:

Hessian matrix:

$$\nabla f(0) = (1,0)$$
 $\mathbf{H}_f(0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$

Example – Bivariate Function

Thus we find for the Taylor polynomial

$$f(x,y) \approx f(0) + \nabla f(0) \cdot \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \cdot \mathbf{H}_f(0) \cdot \mathbf{x}$$
$$= 1 + (1,0) \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{2} (x,y) \cdot \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= 1 + x + x^2 - y^2$$

Summary

- MacLaurin and Taylor polynomial
- ► Taylor series expansion
- ► radius of convergence
- calculations with Taylor series
- ► Taylor series of multivariate functions