

Linear Function

Let $f \colon \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \mapsto \mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{A} \mathbf{x} + \mathbf{b}$ for some $m \times n$ matrix \mathbf{A} .

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b} \quad \Leftrightarrow \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} - \mathbf{A}^{-1}\mathbf{b}$

That is,

 ${\bf f}^{-1}({\bf y}) = {\bf A}^{-1}\, {\bf y} - {\bf A}^{-1}\, {\bf b} \; .$

Provided that **A** is invertible, $[\mathbf{A} = D\mathbf{f}(\mathbf{x})]$ (and thus: n = m)

Observe:

$$(\mathbf{f}^{-1})'(\mathbf{y}) = \mathbf{A}^{-1} = (\mathbf{f}'(\mathbf{x}))^{-1}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

Function

 $f: \mathbb{R} \to [0, \infty), x \mapsto f(x) = x^2$

is not bijective. Thus f^{-1} does *not* exist *globally*.

For some x_0 there exists an *open* interval $(x_0 - \varepsilon, x_0 + \varepsilon)$ where y = f(x) can be solved w.r.t. x. We say:

f is **locally invertible** around x_0 .

For other x_0 such an interval does not exist (even if it is very short).

10 - Inverse and Implicit Functions - $4\,/\,23$

Existence and Derivative

Josef Leydold - Foundations of Mathematics - WS 2024/25

- **1.** For which x_0 is f locally invertible?
- 2. What is the derivative of f^{-1} at $y_0 = f(x_0)$.

Idea:

Replace f by its differential:

$$\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) \approx \mathbf{f}(\mathbf{x}_0) + \mathbf{f}'(\mathbf{x}_0) \cdot \mathbf{h}$$

Hence:

1. $f'(x_0)$ must be invertible. 2. $(f^{-1})'(y_0) = (f'(x_0))^{-1}$

Inverse Function Theorem

Let $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ be a function and x_0 some point with $f'(x_0) \neq 0$.

Then there exist open intervals U around x_0 and V around $y_0 = f(x_0)$ such that $f: U \to V$ is one-to-one and onto, i.e., the inverse function $f^{-1}: \mathcal{V} \to \mathcal{U}$ exists.

Moreover, we find for its derivative:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

10 - Inverse and Implicit Functions - 7 / 23

Example – Inverse Function Theorem

Let
$$f \colon \mathbb{R} \to \mathbb{R}$$
, $x \mapsto y = f(x) = x^2$ and $x_0 = 3$, $y_0 = f(x_0) = 9$.

As $f'(x_0) = 6 \neq 0$, *f* is locally invertible around $x_0 = 3$ and

$$(f^{-1})'(9) = \frac{1}{f'(3)} = \frac{1}{6}$$

For $x_0 = 0$ we *cannot apply* this theorem as f'(0) = 0. (The inverse function theorem provides a *sufficient* condition.)

Josef Leydold - Foundations of Mathematics - WS 2024/25

10 - Inverse and Implicit Functions - 8 / 23

Inverse Function Theorem II

Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^n$ and \mathbf{x}_0 and x_0 some point with $|\mathbf{f}'(\mathbf{x}_0)| \neq 0$.

Then there exist open hyper-rectangles U around \mathbf{x}_0 and V around $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$ such that $\mathbf{f} \colon U \to V$ is one-to-one and onto, i.e., the inverse function $\mathbf{f}^{-1} \colon \mathcal{V} \to \mathcal{U}$ exists.

Moreover, we find for its derivative:

 $(\mathbf{f}^{-1})'(\mathbf{y}_0) = (\mathbf{f}'(\mathbf{x}_0))^{-1}$

The **Jacobian determinant** $|\mathbf{f}'(\mathbf{x}_0)|$ is also denoted by $\frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)} = |\mathbf{f}'(\mathbf{x}_0)|$

Josef Leydold - Foundations of Mathematics - WS 2024/25

Josef Leydold - Foundations of Mathematics - WS 2024/25

Case: General Function

Let F(x, y) be a function and (x_0, y_0) some point with $F(x_0, y_0) = 0$.

If *F* is not linear, then we can compute the derivative $\frac{dy}{dx}$ in x_0 by replacing *F locally* by its total differential

$$dF = F_x \, dx + F_y \, dy = d0 = 0$$

and yield¹

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

¹The given "computation" is not correct but yields the correct result. Note that the differential quotient is not the quotient of differentials.

10 $\,-\,$ Inverse and Implicit Functions $\,-\,$ 13 / 23

Example – Implicit Derivative

Josef Leydold - Foundations of Mathematics - WS 2024/25

Compute the implicit derivative $\frac{dy}{dx}$ of

$$F(x,y) = x^2 + y^2 - 1 = 0$$
.

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{2x}{2y} = -\frac{x}{y}$$

We also can compute the derivative of *x* w.r.t. variable *y*:

$$\frac{dx}{dy} = -\frac{F_y}{F_x} = -\frac{2y}{2x} = -\frac{y}{x}$$

Josef Leydold - Foundations of Mathematics - WS 2024/25

10 - Inverse and Implicit Functions - 14 / 23

Example – Implicit Function Theorem

Compute $\frac{\partial x_2}{\partial x_3}$ of the implicit function

$$F(x_1, x_2, x_3, x_4) = x_1^2 + x_2 x_3 + x_3^2 - x_3 x_4 - 1 = 0$$

at point $(x_1, x_2, x_3, x_4) = (1, 0, 1, 1)$.

As F(1, 0, 1, 1) = 0 and $F_{x_2}(1, 0, 1, 1) = 1 \neq 0$ we can represent x_2 locally as a function of (x_1, x_3, x_4) : $x_2 = f(x_1, x_3, x_4)$.

The partial derivative w.r.t. x_3 is given by

$$\frac{\partial x_2}{\partial x_3} = -\frac{F_{x_3}}{F_{x_2}} = -\frac{x_2 + 2x_3 - x_4}{x_3} = -1$$

At (1, 1, 1, 1) and (1, 1, 0, 1) the implicit function theorem cannot be applied for independent variable x_2 :

 $F(1,1,1,1) \neq 0$ and $F_{x_2}(1,1,0,1) = 0$.

10 - Inverse and Implicit Functions - 19 / 23

Jacobian Matrix

Josef Leydold - Foundations of Mathematics - WS 2024/25

Let

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} F_1(x_1, \dots, x_n, y_1, \dots, y_m) \\ \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) \end{pmatrix} = 0$$

then matrix

$$\frac{\partial \mathbf{F}(\mathbf{x},\mathbf{y})}{\partial \mathbf{y}} = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix}$$

is called the Jacobian matrix of F(x, y) w.r.t. y.

Analogous: $\frac{\partial F(x,y)}{\partial x}$

Josef Leydold - Foundations of Mathematics - WS 2024/25

10 - Inverse and Implicit Functions - 20 / 23

Implicit Function Theorem III

Let
$$\mathbf{F} \colon \mathbb{R}^{n+m} \to \mathbb{R}^m$$
,
 $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{F}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} F_1(x_1, \dots, x_n, y_1, \dots, y_m) \\ \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) \end{pmatrix}$

and let $(\mathbf{x}_0, \mathbf{y}_0)$ be a point with

$$\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = 0$$
 and $\left| \frac{\partial \mathbf{F}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}} \right| \neq 0$ for $(\mathbf{x}, \mathbf{y}) = (\mathbf{x}_0, \mathbf{y}_0)$.

Then there exists a hyper-rectangle *R* around $(\mathbf{x}_0, \mathbf{y}_0)$ such that

►
$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$$
 has a unique solution $\mathbf{y} = \mathbf{f}(\mathbf{x})$ in *R*, where
 $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, and

 $\blacktriangleright \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = -\left(\frac{\partial \mathbf{F}}{\partial \mathbf{y}}\right)^{-1} \cdot \left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}\right)$

Josef Leydold - Foundations of Mathematics - WS 2024/25

