Chapter 1

Logic, Sets and Maps

Proposition

We need some elementary knowledge about **logic** for doing mathematics. The central notion is "proposition".

A **proposition** is a sentence with is either **true** (T) or **false** (F).

- "Vienna is located at river Danube." is a true proposition.
- ► *"Bill Clinton was president of Austria."* is a false proposition.
- ► *"19 is a prime number."* is a true proposition.
 - "This statement is false." is not a proposition.

Logical Connectives

We get compound propositions by connecting (simpler) propositions by using **logical connectives**.

This is done by means of words *"and"*, *"or"*, *"not"*, or *"if ... then"*, known from everyday language.

Connective	Symbol	Name
not P	$\neg P$	negation
P and Q	$P \wedge Q$	conjunction
$P ext{ or } Q$	$P \lor Q$	disjunction
if P then Q	$P \Rightarrow Q$	implication
P if and only if Q	$P \Leftrightarrow Q$	equivalence

Truth Table

Truth values of logical connectives.

P Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
тт	F	т	т	т	Т
				F	F
FT	Т	F	Т	Т	F
FF	Т	F	F	т	Т
· ·					

Let P = x is divisible by 2" and Q = x is divisible by 3". Proposition $P \land Q$ is true if and only if x is divisible by 2 and 3 (i.e., by 6).

Negation and Disjunction

• Negation $\neg P$ is not the "opposite" of proposition *P*.

Negation of P = "all cats are black" is $\neg P =$ "Not all cats are black"

(And not "all cats are not black" or even "all cats are white"!)

• *Disjunction* $P \lor Q$ is in a non-exclusive sense:

 $P \lor Q$ is true if and only if

- P is true, or
- ► *Q* is true, or
- both P and Q are true.

Implication

The truth value of *implication* $P \Rightarrow Q$ seems a bit mysterious.

Note that $P \Rightarrow Q$ does not make any proposition about the truth value of P or Q!

Which of the following propositions is true?

- "If Bill Clinton is Austrian citizen, then he can be elected for Austrian president."
- "If Karl (born 1970) is Austrian citizen, then he can be elected for Austrian president."
- "If x is a prime number larger than 2, then x is odd."

Implication $P \Rightarrow Q$ is *equivalent* to $\neg P \lor Q$:

$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$

A Simple Logical Proof

We can derive the truth value of proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ by means of a truth table:

PQ
$$\neg P$$
 $(\neg P \lor Q)$ $(P \Rightarrow Q)$ $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ TTFTTTTFFFFTFTTTTTFFTTTT

That is, proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ is always true independently from the truth values for *P* and *Q*.

It is a so called *tautology*.

Theorems

Mathematics consists of propositions of the form: P implies Q,but you never ask whether P is true.(Bertrand Russell)

A mathematical statement (*theorem*, *proposition*, *lemma*, *corollary*) is a proposition of the form $P \Rightarrow Q$.

P is called a **sufficient** condition for Q.

A *sufficient* condition P guarantees that proposition Q is true. However, Q can be true even if P is false.

Q is called a **necessary** condition for *P*, $Q \leftarrow P$.

A *necessary* condition Q must be true to allow P to be true. It does not guarantee that P is true.

Necessary conditions often are used to find *candidates* for valid answers to our problems.

Quantors

Mathematical texts often use the expressions *"for all"* and *"there exists"*, resp.

In formal notation the following symbols are used:

Quantor	Symbol
for all there exists a	E
there exists exactly one	∃!
there does not exists	⋣

The notion of *set* is fundamental in modern mathematics.

We use a simple definition from naïve set theory:

A set is a collection of *distinct* objects.

An object *a* of a set *A* is called an **element** of the set. We write:

$$a \in A$$

Sets are defined by *enumerating* or a *description* of their elements within *curly brackets* $\{\dots\}$.

$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{x \mid x \text{ is an integer divisible by 2}\}$

Important Sets*

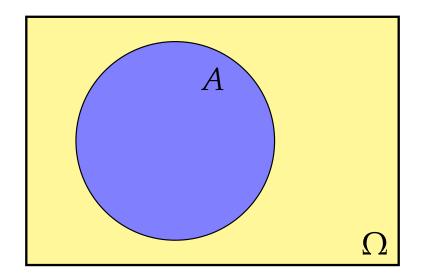
Symbol	Description
Ø	empty set sometimes: {}
\mathbb{N}	natural numbers $\{1, 2, 3, \ldots\}$
\mathbb{Z}	integers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
Q	rational numbers $\{\frac{k}{n} \mid k, n \in \mathbb{Z}, n \neq 0\}$
$\mathbb R$	real numbers
[<i>a</i> , <i>b</i>]	closed interval $\{x \in \mathbb{R} \mid a \leq x \leq b\}$
(<i>a</i> , <i>b</i>)	open interval ^a $\{x \in \mathbb{R} \mid a < x < b\}$
[<i>a</i> , <i>b</i>)	half-open interval $\{x \in \mathbb{R} \mid a \leq x < b\}$
$\mathbb C$	complex numbers $\{a+bi \mid a,b \in \mathbb{R}, i^2 = -1\}$

^aalso:] *a*, *b* [

Venn Diagram*

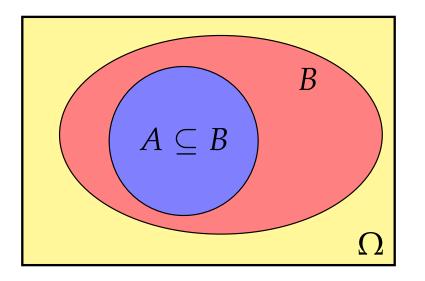
We assume that all *sets* are subsets of some universal superset Ω .

Sets can be represented by **Venn diagrams** where Ω is a rectangle and sets are depicted as circles or ovals.



Subset and Superset*

Set *A* is a **subset** of *B*, $A \subseteq B$, if all elements of *A* also belong to *B*, $x \in A \Rightarrow x \in B$.



Vice versa, B is then called a **superset** of A, $\begin{bmatrix} a \\ b \end{bmatrix}$

$$B \supseteq A$$
.

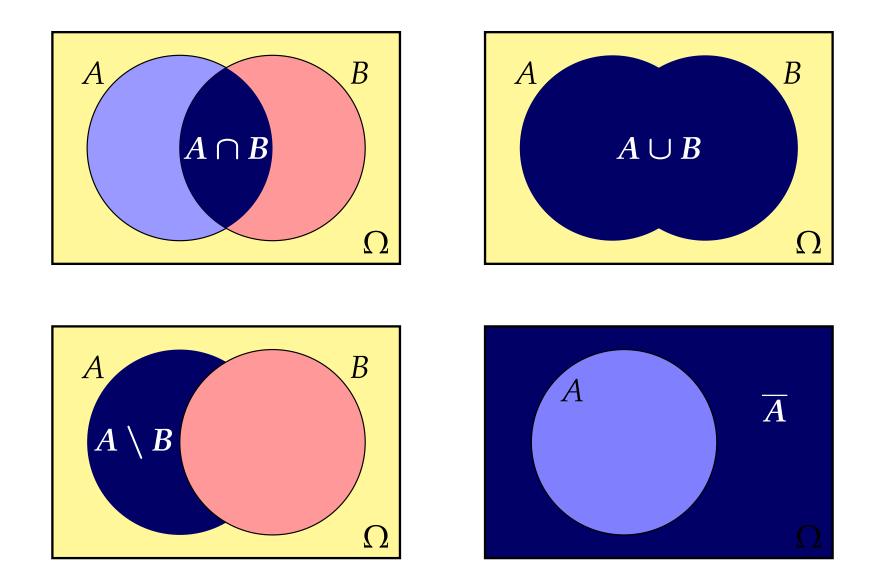
Set *A* is a **proper subset** of *B*,
$$A \subset B$$
 (or: $A \subsetneq B$), if $A \subseteq B$ and $A \neq B$.

Basic Set Operations*

Symbol	Definition	Name
$A \cap B$ $A \cup B$ $A \setminus B$ \overline{A} $also: A - b$	$ \{x x \in A \text{ and } x \in B\} $ $ \{x x \in A \text{ or } x \in B\} $ $ \{x x \in A \text{ and } x \notin B\} $ $ \Omega \setminus A $	intersection union set-theoretic difference ^a complement

Two sets A and B are **disjoint** if $A \cap B = \emptyset$.

Basic Set Operations*

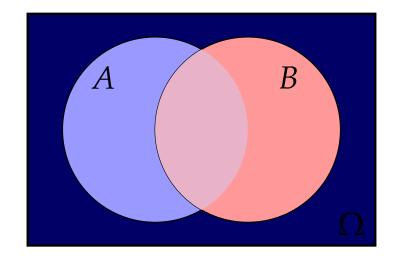


Rules for Basic Operations*

Rule	Name
$A\cup A=A\cap A=A$	Idempotence
$A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$	Identity
$(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$	Associativity
$A \cup B = B \cup A$ and $A \cap B = B \cap A$	Commutativity
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributivity
$\overline{A} \cup A = \Omega$ and $\overline{A} \cap A = \emptyset$ and \overline{A}	$\overline{\overline{\overline{A}}} = A$

De Morgan's Law*

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
 and $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$



A union B complemented is the equivalent of A complemented intersected with B complemented.

1 - Logic, Sets and Maps - 17/30

Cartesian Product*

The set

$$A \times B = \{(x, y) | x \in A, y \in B\}$$

is called the **Cartesian product** of *sets* A and B.

Given two sets A and B the Cartesian product $A \times B$ is the set of all unique *ordered pairs* where the first element is from set A and the second element is from set B.

In general we have $A \times B \neq B \times A$.

Cartesian Product*

The Cartesian product of $A = \{0, 1\}$ and $B = \{2, 3, 4\}$ is $A \times B = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}.$

$A \times B$	2	3	4
0	(0,2)	(<mark>0,3</mark>)	(0, 4)
1	(1,2)	(1 , 3)	(1 , 4)

Cartesian Product*

The Cartesian product of A = [2, 4] and B = [1, 3] is $A \times B = \{(x, y) \mid x \in [2, 4] \text{ and } y \in [1, 3]\}.$



Map*

A map (or mapping) f is defined by

- (i) a domain D_f ,
- (ii) a codomain (target set) W_f and
- (iii) a rule, that maps each element of D to exactly one element of W.

$$f: D \to W, \quad x \mapsto y = f(x)$$

- \blacktriangleright x is called the **independent** variable, y the **dependent** variable.
- y is the **image** of x, x is the **preimage** of y.
- f(x) is the function term, x is called the argument of f.
- ► $f(D) = \{y \in W : y = f(x) \text{ for some } x \in D\}$ is the **image** (or **range**) of *f*.

Other names: function, transformation

Injective \cdot Surjective \cdot Bijective*

Each argument has exactly one image. Each $y \in W$, however, may have any number of preimages. Thus we can characterize maps by their possible number of preimages.

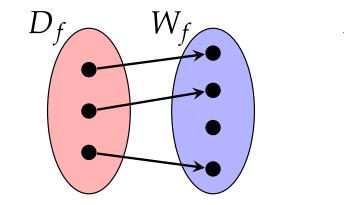
- A map f is called **one-to-one** (or **injective**), if each element in the codomain has at most one preimage.
- It is called **onto** (or **surjective**), if each element in the codomain has *at least one* preimage.
- It is called **bijective**, if it is both one-to-one and onto, i.e., if each element in the codomain has *exactly one* preimage.

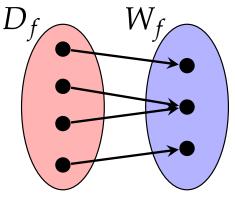
Injections have the important property

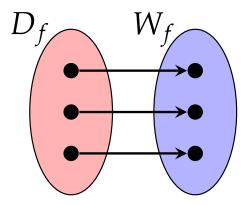
$$f(x) \neq f(y) \quad \Leftrightarrow \quad x \neq y$$

Injective · Surjective · Bijective*

Maps can be visualized by means of arrows.







one-to-one (not onto) onto (not one-to-one) one-to-one and onto (bijective)

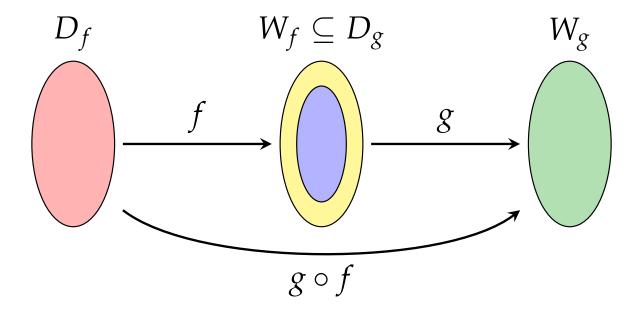
Function Composition*

Let $f: D_f \to W_f$ and $g: D_g \to W_g$ be functions with $W_f \subseteq D_g$. Function

$$g \circ f \colon D_f \to W_g, \ x \mapsto (g \circ f)(x) = g(f(x))$$

is called **composite function**.

(read: "g composed with f", "g circle f", or "g after f")



Inverse Map*

If $f: D_f \to W_f$ is a **bijection**, then every $y \in W_f$ can be uniquely mapped to its preimage $x \in D_f$.

Thus we get a map

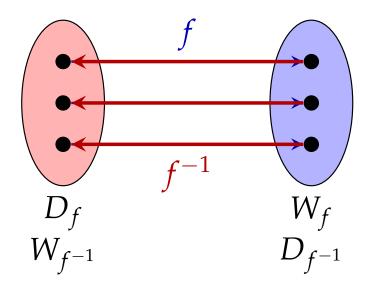
$$f^{-1} \colon W_f \to D_f, \ y \mapsto x = f^{-1}(y)$$

which is called the **inverse map** of f.

We obviously have for all $x \in D_f$ and $y \in W_f$,

$$f^{-1}(f(x)) = f^{-1}(y) = x$$
 and $f(f^{-1}(y)) = f(x) = y$.

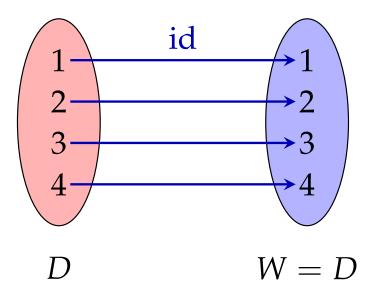
Inverse Map*



Identity*

The most elementary function is the **identity map** id, which maps its argument to itself, i.e.,

id:
$$D \to W = D, x \mapsto x$$



Identity*

The identity map has a similar role for compositions of functions as 1 has for multiplications of numbers:

$$f \circ \mathrm{id} = f$$
 and $\mathrm{id} \circ f = f$

Moreover,

$$f^{-1} \circ f = \operatorname{id} \colon D_f \to D_f$$
 and $f \circ f^{-1} = \operatorname{id} \colon W_f \to W_f$

Real-valued Functions*

Maps where domain and codomain are (subsets of) *real* numbers are called **real-valued functions**,

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$$

and are the most important kind of functions.

The term **function** is often exclusively used for *real-valued* maps.

We will discuss such functions in more details later.

Summary

- mathematical logic
- ► theorem
- necessary and sufficient condition
- sets, subsets and supersets
- Venn diagram
- basic set operations
- de Morgan's law
- Cartesian product
- maps
- one-to-one and onto
- ► inverse map and identity