	Proposition
	We need some elementary knowledge about logic for doing mathematics. The central notion is "proposition".
Chapter 1	A proposition is a sentence with is either true (T) or false (F).
Logic, Sets and Maps	 "Vienna is located at river Danube." is a true proposition. "Bill Clinton was president of Austria." is a false proposition. "19 is a prime number." is a true proposition. "This statement is false." is not a proposition.
osef Leydold - Foundations of Mathematics - WS 2024/25 1 - Logic, Sets and Maps - 1 / 30	Josef Leydold - Foundations of Mathematics - WS 2024/25 1 - Logic; Sets and Maps - 2 /
Logical Connectives	Truth Table
We get compound propositions by connecting (simpler) propositions by using logical connectives .	Truth values of logical connectives.
This is done by means of words "and", "or", "not", or "if then", known from everyday language.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Connective Symbol Nome	
Connective Symbol Name	TFFFFTFF FTTFTF
not P $\neg P$ negation	
P and Q $P \land Q$ conjunctionP or Q $P \lor Q$ disjunction	
if P then Q $P \Rightarrow Q$ implication	Let $P = "x$ is divisible by 2" and $Q = "x$ is divisible by 3".
P if and only if $Q P \Leftrightarrow Q$ equivalence	Proposition $P \land Q$ is true if and only if x is divisible by 2 and 3
sef Leydold - Foundations of Mathematics - WS 2024/25 1 - Logic, Sets and Maps - 3 / 30	Josef Leydold – Foundations of Mathematics – WS 2024/25 1 – Logic, Sets and Maps – 4.
Negation and Disjunction	Implication
• Negation $\neg P$ is not the "opposite" of proposition <i>P</i> .	The truth value of <i>implication</i> $P \Rightarrow Q$ seems a bit mysterious.
Negation of P = "all cats are black" is $\neg P$ = "Not all cats are black"	Note that $P \Rightarrow Q$ does not make any proposition about the truth value of P or $Q!$
 (And not "all cats are not black" or even "all cats are white"!) Disjunction P ∨ Q is in a non-exclusive sense: 	 Which of the following propositions is true? "If Bill Clinton is Austrian citizen, <i>then</i> he can be elected for Austrian president."
$P \lor Q$ is true if and only if $\blacktriangleright P$ is true, or	 "If Karl (born 1970) is Austrian citizen, then he can be elected for Austrian president."
 <i>Q</i> is true, or both <i>P</i> and <i>Q</i> are true. 	 "If x is a prime number larger than 2, then x is odd."
	Implication $P \Rightarrow Q$ is <i>equivalent</i> to $\neg P \lor Q$:
	$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$
best Leydold - Foundations of Mathematics - WS 2024/25 1 - Logic, Sets and Maps - 5 / 30	Josef Leydold – Foundations of Mathematics – WS 2024/25 1 – Logic, Sets and Maps – 6 /
A Simple Logical Proof	Theorems
We can derive the truth value of proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ by means of a truth table:	Mathematics consists of propositions of the form: P implies Q , but you never ask whether P is true. (Bertrand Russell)
$\begin{array}{c cccc} P & Q & \neg P & (\neg P \lor Q) & (P \Rightarrow Q) & (P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q) \\ \hline T & T & T & T & T & T \\ \hline \end{array}$	A mathematical statement (theorem, proposition, lemma, corollary) is a proposition of the form $P \Rightarrow Q$.
TTFTTTT	P is called a sufficient condition for Q .
TFFFFT FTTTT	A sufficient condition P guarantees that proposition Q is true. However,
	Q can be true even if P is false.
FFTTT T	
	Q is called a necessary condition for P, $Q \leftarrow P$.
FFTTTThat is, proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ is always true independently from the truth values for P and Q .	A <i>necessary</i> condition Q must be true to allow P to be true. It does not
That is, proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ is always true	





