

A Simple Logical Proof

We can derive the truth value of proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ by means of a truth table:

1 $\,-\,$ Logic, Sets and Maps $\,-\,$ 7 / 30

1 $\,-\,$ Logic, Sets and Maps $\,-\,$ 8 / 30

Р	Q	$\neg P$	$(\neg P \lor Q)$	$(P \Rightarrow Q)$	$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$
т	т	F	T F T T	т	т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	т

That is, proposition $(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$ is always true independently from the truth values for P and Q.

It is a so called *tautology*.

Josef Leydold - Foundations of Mathematics - WS 2024/25

Theorems

Mathematics consists of propositions of the form: P implies Q, but you never ask whether P is true. (Bertrand Russell)

A mathematical statement (theorem, proposition, lemma, corollary) is a proposition of the form $P \Rightarrow Q$.

P is called a **sufficient** condition for *Q*.

A *sufficient* condition *P* guarantees that proposition *Q* is true. However, Q can be true even if P is false.

Q is called a **necessary** condition for *P*, $Q \leftarrow P$.

A *necessary* condition Q must be true to allow P to be true. It does not guarantee that *P* is true.

Necessary conditions often are used to find candidates for valid answers to our problems.

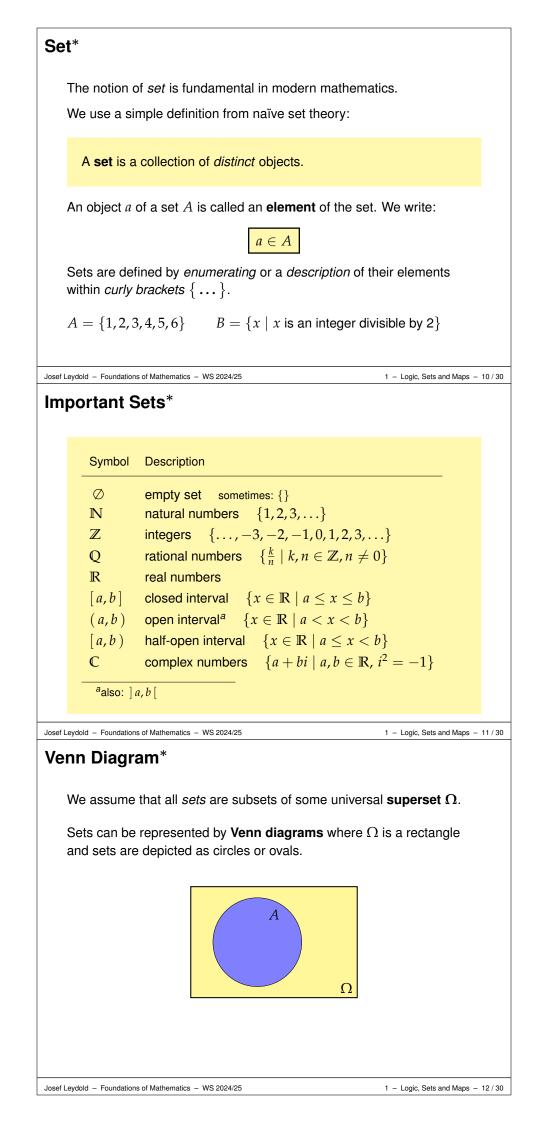
Josef Leydold - Foundations of Mathematics - WS 2024/25

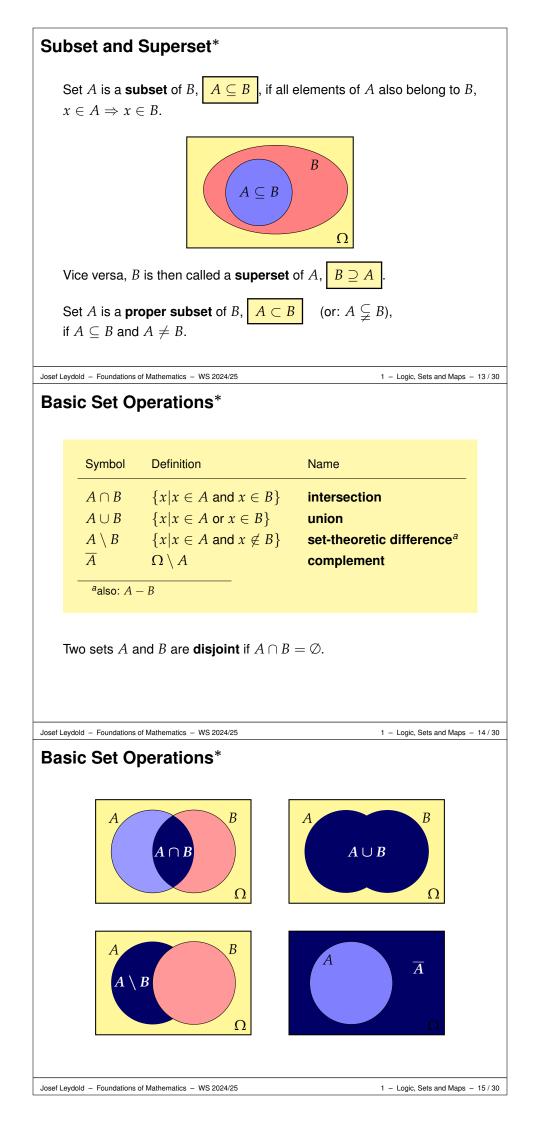
Quantors

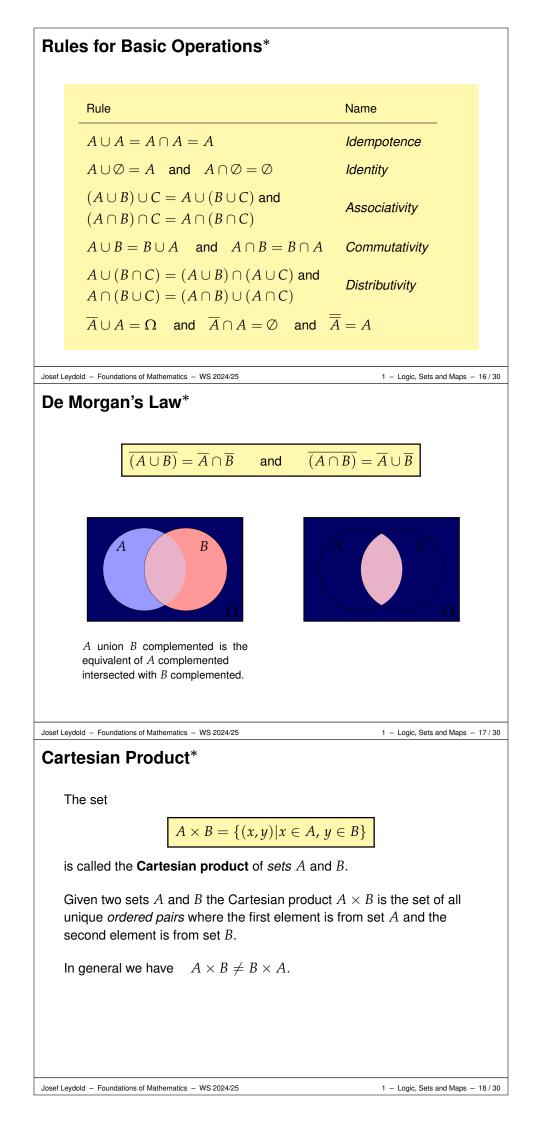
Mathematical texts often use the expressions "for all" and "there exists", resp.

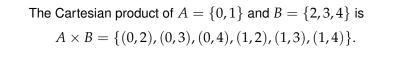
In formal notation the following symbols are used:

-	Quantor	Symbol
	for all	\forall
	there exists a	Ξ
	there exists exactly one	∃!
	there does not exists	∄

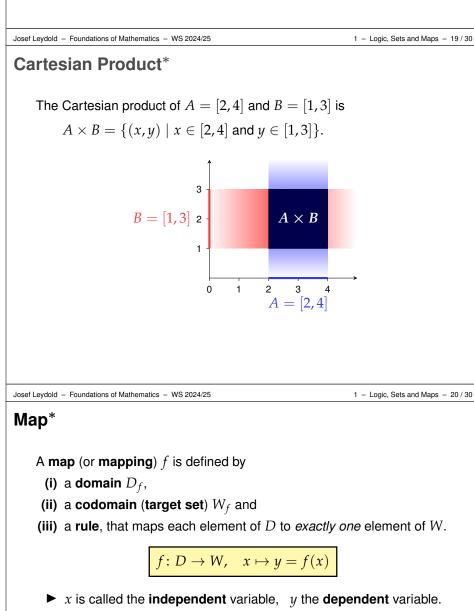






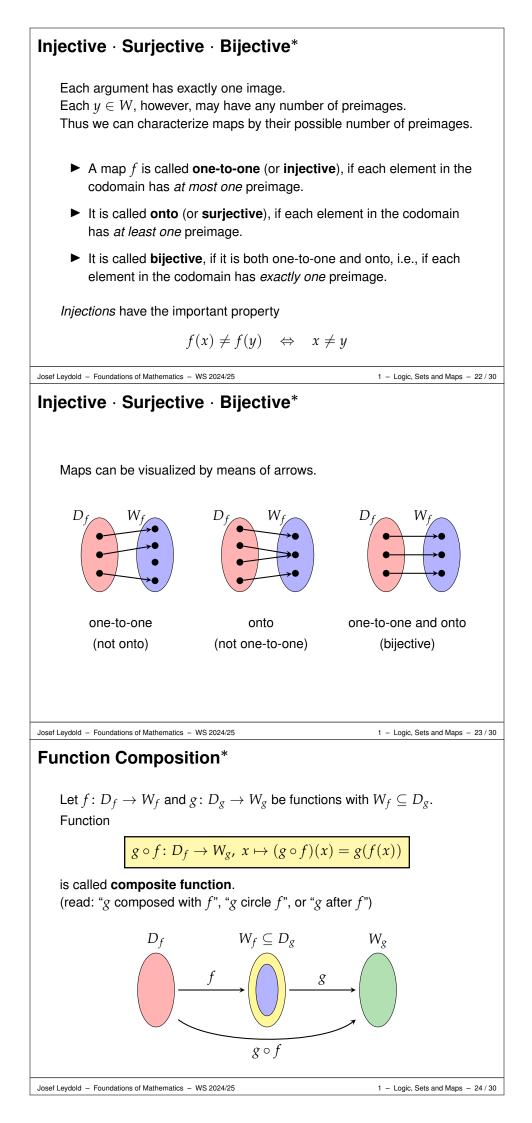


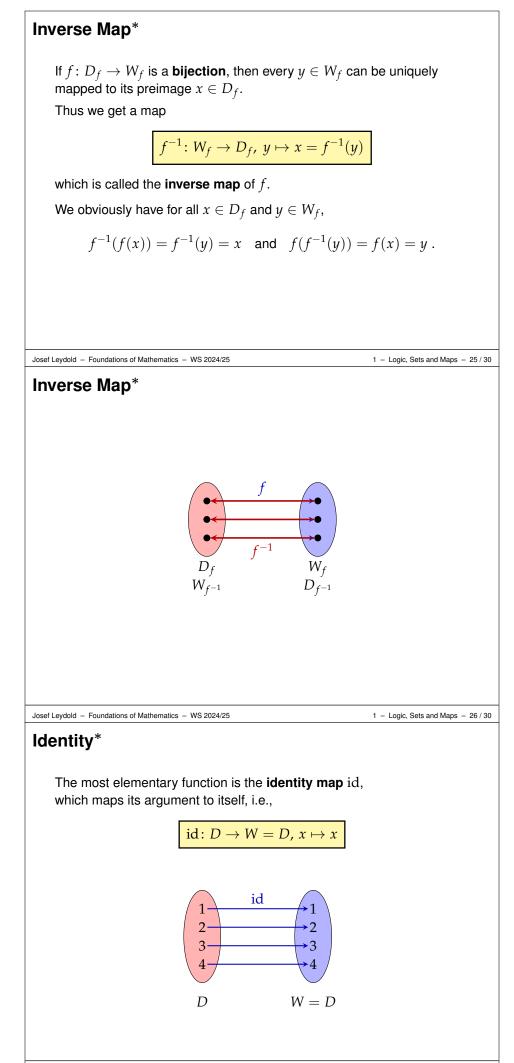
$A \times B$	2	3	4
0	(<mark>0,2</mark>)	(0 , 3)	(<mark>0, 4</mark>)
1	(1,2)	(1,3)	(1,4)



- y is the **image** of x, x is the **preimage** of y.
- f(x) is the function term, x is called the argument of f.
- $f(D) = \{y \in W : y = f(x) \text{ for some } x \in D\}$ is the **image** (or **range**) of f.

Other names: function, transformation





Josef Leydold - Foundations of Mathematics - WS 2024/25

1 - Logic, Sets and Maps - 27 / 30

