
ATheory of Correspondence Analysis

CA is based on fairly straightforward, classical results in matrix theory. The
central result is the singular value decomposition (SVD), which is the basis of
many multivariate methods such as principal component analysis, canonical
correlation analysis, all forms of linear biplots, discriminant analysis and met-
ric multidimensional scaling. In this appendix the theory of CA is summarized,
as well as the theory of related methods discussed in the book. Matrix–vector
notation is preferred because it is more compact, but also because it is closer
to the implementation of the method in the R computing language.
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Correspondence
matrix and
preliminary
notation

Let N denote the I × J data matrix, with positive row and column sums
(almost always N consists of nonnegative numbers, but there are some ex-
ceptions such as the one described at the end of Chapter 23). For notational
simplicity the matrix is first converted to the correspondence matrix P by
dividing N by its grand total n =

∑
i

∑
j nij = 1TN1 (the notation 1 is used

for a vector of ones of length that is appropriate to its use; hence the first 1
is I × 1 and the second is J × 1 to match the row and column lengths of N).
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202 Theory of Correspondence Analysis

Correspondence matrix:

P =
1
n
N (A.1)

The following notation is used:

Row and column masses:

ri =
∑J

j=1 pij

i.e., r = P1

cj =
∑I

i=1 pij

c = PT1
(A.2)

Diagonal matrices of row and column masses:

Dr = diag(r) and Dc = diag(c) (A.3)

Note that all subsequent definitions and results are given in terms of these
relative quantities P = {pij}, r = {ri} and c = {cj}, whose elements add up
to 1 in each case. Multiply these by n to recover the elements of the original
matrix N: npij = nij , nri = i-th row sum of N, ncj = j-th column sum of N.

Basic
computational

algorithm

The computational algorithm to obtain coordinates of the row and column
profiles with respect to principal axes, using the singular value decomposition
(SVD), is as follows:

CA Step 1 — Calculate the matrix S of standarized residuals:

S = D− 1
2

r (P − rcT)D− 1
2

c (A.4)

CA Step 2 — Calculate the SVD of S:

S = UDαVT where UTU = VTV = I (A.5)

where Dα is the diagonal matrix of (positive) singular values in
descending order: α1 ≥ α2 ≥ · · ·

CA Step 3 — Standard coordinates Φ of rows:

Φ = D− 1
2

r U (A.6)

CA Step 4 — Standard coordinates Γ of columns:

Γ = D− 1
2

c V (A.7)

CA Step 5 — Principal coordinates F of rows:

F = D− 1
2

r UDα = ΦDα (A.8)

CA Step 6 — Principal coordinates G of columns:

G = D− 1
2

c VDα = ΓDα (A.9)

CA Step 7 — Principal inertias λk:

λk = α2
k, k = 1, 2, . . . , K where K = min{I − 1, J − 1} (A.10)
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The rows of the coordinate matrices in (A.6)–(A.9) refer to the rows or
columns, as the case may be, of the original table, while the columns of
these matrices refer to the principal axes, or dimensions, of which there are
min{I−1, J−1}, i.e., one less than the number of rows or columns, whichever
is smaller. Notice how the principal and standard coordinates are scaled:

FDrFT = GDcGT = Dλ (A.11)
ΦDrΦT = ΓDc ΓT = I (A.12)

That is, the weighted sum-of-squares of the principal coordinates on the k-th
dimension (i.e., their inertia in the direction of this dimension) is equal to
the principal inertia (or eigenvalue) λk = α2

k, the square of the k-th singular
value, whereas the standard coordinates have weighted sum-of-squares equal
to 1. All coordinate matrices have orthogonal columns, where the masses are
always used in the calculation of the (weighted) scalar products.

A note on the
singular value
decomposition
(SVD)

The SVD is the fundamental mathematical result for CA, as it is for other di-
mension reduction techniques such as principal component analysis, canonical
correlation analysis and linear discriminant analysis. This matrix decomposi-
tion expresses any rectangular matrix as a product of three matrices of simple
structure, as in (A.5) above: S = UDαVT. The columns of the matrices
U and V are the left and right singular vectors respectively, and the posi-
tive values αk down the diagonal of Dα, in descending order, are the singular
values. The SVD is related to the more well-known eigenvalue–eigenvector de-
composition (or eigendecomposition) of a square symmetric matrix as follows:
SST and STS are square symmetric matrices which have eigendecompositions
SST = UD2

αUT and STS = VD2
αVT, so the singular vectors are also eigen-

vectors of these respective matrices, and the singular values are the square
roots of their eigenvalues. The practical utility of the SVD is that if one con-
structs another I × J matrix S(m) from the the first m columns of U(m) and
V(m) and the first m singular values in Dα(m): S(m) = U(m)Dα(m)VT

(m), then
S(m) is the least-squares rank m approximation of S (this result is known
as the Eckart-Young theorem). Since the objective of finding low-dimensional
best-fitting subspaces coincides with the objective of finding low-rank matrix
approximations by least-squares, the SVD solves our problem completely and
in a very compact way. The only adaptation needed is to incorporate the
weighting of the rows and columns by the masses into the SVD so that the
approximations are by weighted least squares. If a generalized form of the
SVD were defined, where the singular vectors are normalized with weighting
by the masses, then the CA solution can be obtained in one step. For exam-
ple, the generalized SVD of the contingency ratios pij/(ricj), elements of the
matrix D−1

r PD−1
c , centred at the constant value 1, leads to the standard row

and column coordinates directly:

D−1
r PD−1

c − 11T = ΦDαΓT where ΦTDrΦ = ΓTDcΓ = I (A.13)
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The bilinear
CA model

From steps 1 to 4 of the basic algorithm, the data in P can be written as
follows (see also (13.4) on page 101 and (14.9) on page 109):

pij = ricj

(
1 +

K∑
k=1

√
λkφikγjk

)
(A.14)

(also called the reconstitution formula). In matrix notation:

P = Dr(11T + ΦD1/2
λ ΓT)Dc (A.15)

Because of the simple relations (A.8) and (A.9) between the principal and
standard coordinates, this bilinear model can be written in several alternative
ways — see also (14.10) and (14.11) on pages 109–110.

Transition
equations between
rows and columns

The left and right singular vectors are related linearly, for example by multi-
plying the SVD on the right by V: SV = UDα. Expressing such relations in
terms of the principal and standard coordinates gives the following variations
of the same theme, called transition equations (see (14.1) & (14.2) and (14.5)
& (14.6) for the equivalent scalar versions):
Principal as a function of standard (barycentric relationships):

F = D−1
r PΓ G = D−1

c PTΦ (A.16)

Principal as a function of principal:

F = D−1
r PGD−1/2

λ G = D−1
c PTFD−1/2

λ (A.17)

The equations (A.16) are those that were mentioned as early as Chapter 3,
which express the profile points as weighted averages of the vertex points,
where the weights are the profile elements. These are the equations that gov-
ern the asymmetric maps . The equations (A.17) show that the two sets of
principal coordinates, which govern the symmetric map, are also related by a
barycentric (weighted average) relationship, but with scale factors (the inverse
square roots of the principal inertias) that are different on each axis.

Supplementary
points

The transition equations are used to situate supplementary points on the map.
For example, given a supplementary column point with values in h (I × 1),
divide by its total 1Th to obtain the column profile h̃ = (1/1Th)h and then
use the profile transposed as a row vector in the second equation of (A.16),
for example, to calculate the coordinates g of the supplementary column:

g = h̃TΦ (A.18)

Total inertia
and χ2-distances

The total inertia of the data matrix is the sum of squares of the matrix S in
(A.4):

inertia = trace(SST) =
I∑

i=1

J∑
j=1

(pij − ricj)2

ricj
(A.19)
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The inertia is also the sum of squares of the singular values, i.e., the sum of
the eigenvalues:

inertia =
K∑

k=1

α2
k =

K∑
k=1

λk (A.20)

The χ2-distances between row profiles and between column profiles are:

χ2-distances between rows i and i′ :
J∑

j=1

(
pij

ri
− pi′j

ri′

)2

/cj (A.21)

χ2-distances between columns j and j′ :
I∑

i=1

(
pij

cj
− pij′

cj′

)2

/ri (A.22)

To write the full set of χ2-distances in the form of a square symmetric matrix
requires a bit more work. First, calculate the matrix A of “χ2 scalar products”
between row profiles, for example, as:

χ2 scalar products between rows : A = D−1
r PD−1

c PTD−1
r (A.23)

Then define the vector a as the elements on the diagonal of this matrix (i.e.,
the scalar products of the row profiles with themselves):

a = diag(A) (A.24)

Then the I × I matrix of squared χ2-distances is:

squared χ2-distance matrix between rows :a1T + 1aT − 2A (A.25)

To calculate the J×J matrix of squared χ2-distances between column profiles,
interchange rows with columns in (A.23), defining A as D−1

c PTD−1
r PD−1

c and
then following with (A.24) and (A.25).

Contributions of
points to principal
inertias

The contributions of the row and columns points to the inertia on the k-th
dimension are the inertia components:

for row i:
rif

2
ik

λk
= riφ

2
ik for column j:

cjg
2
jk

λk
= cjγ

2
jk (A.26)

recalling the relationship between principal and standard coordinates given
in (A.8) and (A.9): fik =

√
λkφik, gjk =

√
λkγjk (notice that the square

roots of the values in (A.26) are exactly the coordinates proposed for the
standard CA biplot of Chapter 13, which shows that the squared lengths of
these coordinates are the contributions to the principal axes).

Contributions of
principal axes to
point inertias
(squared
correlations)

The contributions of the dimensions to the inertia of the i-th row and j-th
column points (i.e., the squared cosines or squared correlations) are:

for row i:
f2

ik∑
k f2

ik

for column j:
g2

jk∑
k g2

jk

(A.27)

As shown in Chapter 11, the denominators in (A.27) are the squared χ2-
distances between the corresponding profile point and the average profile.
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Ward
clustering of row

or column profiles

The clustering of Chapter 15 is described here in terms of the rows; exactly the
same applies to the clustering of the columns. The rows are clustered at each
step of the algorithm to minimise the decrease in the χ2 statistic (equivalently,
the decrease in the inertia since inertia = χ2/n, where n is the total of the
table). This clustering criterion is equivalent to Ward clustering, where each
cluster is weighted by the total mass of its members. The measure of difference
between rows can be shown to be the weighted form of the squared chi-squared
distance between profiles. Suppose ai and ri, i = 1, . . . , I, denote the I row
profiles of the data matrix, and their masses, respectively. Then identifying
the pair that gives the least decrease in inertia is equivalent to looking for the
pair of rows (i, i′) which minimize the following measure:

riri′

ri + ri′
‖ai − ai′‖2

c (A.28)

The two rows are then merged by summing their frequencies, and the profile
and mass are recalculated. The same measure of difference as (A.28) is cal-
culated at each stage of the clustering for the row profiles at that stage (see
(15.2) on page 120 for the equivalent formula based on profiles of clusters),
and the two profiles with the least difference are merged. So (A.28) is the level
of clustering in terms of the inertia decrease, or if multiplied by n the decrease
in χ2. In the case of a contingency table the level of clustering can be tested
for significance using the tables at the end of this Appendix.

Stacked tables Suppose tables Nqs, q = 1, . . . , Q, s = 1, . . . , S are concatenated row- and/or
columnwise to make a block matrix N. If the marginal frequencies are the
same in each row and in each column (as is the case when the same individuals
are cross-tabulated separately in several tables), then the inertia of N is the
average of the separate inertias of the tables Nqs:

inertia(N) =
1

QS

Q∑
q=1

S∑
s=1

inertia(Nqs) (A.29)

Multiple CA Suppose the original matrix of categorical data is N ×Q, i.e., N cases and Q
variables. Classical multiple CA (MCA) has two forms. The first form converts
the cases-by-variables data to an indicator matrix Z where the categorical data
have been recoded as dummy variables. If the q-th variable has Jq categories,
this indicator matrix will have J =

∑
q Jq columns (see Chapter 18, Exhibit

18.1 for an example). Then the indicator version of MCA is the application
of the basic CA algorithm to the matrix Z, resulting in coordinates for the
N cases and the J categories. The second form of MCA calculates the Burt
matrix B = ZTZ of all two-way cross-tabulations of the Q variables (see
Chapter 18, Exhibit 18.4 for an example). Then the Burt version of MCA
is the application of the basic CA algorithm to the matrix B, resulting in
coordinates for the J categories (B is a symmetric matrix). The standard
coordinates of the categories are identical in the two versions of MCA, and the
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principal inertias in the Burt version are the squares of those in the indicator
version.

Joint CAJoint CA (JCA) is the fitting of the off-diagonal cross-tabulations of the Burt
matrix, ignoring the cross-tabulations on the block diagonal. The algorithm
we use is an alternating least-squares procedure which successively applies
CA to the Burt matrix which has been modified by replacing the values on
the block diagonal with estimated values from the CA of the previous iter-
ation. The algorithm itself is explained in more detail in the Computational
Appendix. On convergence of the JCA algorithm, the CA is performed on the
last modified Burt matrix, B̃, which has its diagonal blocks perfectly fitted
by construction. In other words, supposing that the solution requested is two-
dimensional, then the modified diagonal blocks satisfy (A.14) exactly using
just two terms in the bilinear CA model (or reconstitution formula).

Percentage of
inertia explained
in JCA

Hence the total inertia of B̃ includes a part ∆ for these diagonal blocks, and
so do the first two principal inertias, λ̃1 and λ̃2, which perfectly explain the
part ∆. To obtain the percentage of inertia explained by the two-dimensional
solution, the amount ∆ has to be discounted both from the total and from
the sum of the two principal inertias. The value of ∆ can be obtained via the
difference between the inertia of the original Burt matrix B (whose diagonal
inertias are known) and the modified one B̃, as follows (here we use the result
(A.29) which applies to the subtables of B, denoted by Bqs, and those of B̃,
whose off-diagonal tables are the same):

inertia(B) =
1

Q2

(∑∑
q �=s

inertia(Bqs) +
∑

q

inertia(Bqq)

)

=
1

Q2

(∑∑
q �=s

inertia(Bqs) + (J − Q)
)

inertia(B̃) =
1

Q2

(∑∑
q �=s

inertia(Bqs)
)

+ ∆

Subtracting the above leads to:

inertia(B) − inertia(B̃) =
J − Q

Q2
− ∆ (A.30)

which gives the value of ∆:

∆ =
J − Q

Q2
−
(
inertia(B) − inertia(B̃)

)
(A.31)

Discounting this amount from the total and the sum of the principal iner-
tias (assuming a two-dimensional solution) gives the percentage of inertia
explained by the JCA solution:

100 × λ̃1 + λ̃2 − ∆

inertia(B̃) − ∆
(A.32)
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Contributions
in JCA

The previous section showed how to discount the extra inertia as a result of
the modified diagonal blocks of the Burt matrix in JCA. There is an identical
situation at the level of each point. Each category point j has an additional
amount of inertia, δj , due to the modified diagonal blocks. In the case of the
original Burt matrix B we know exactly what this extra amount is due to the
diagonal matrices in the diagonal blocks: for the j-th point it is (1−Qcj)/Q2,
where cj is the j-th mass (summing these values for j = 1, . . . , J , we obtain
(J −Q)/Q2 which was the total additional amount due to the diagonal blocks
of B). Therefore, just as above, we can derive how to obtain contributions of
the two-dimensional solution to the point inertias as follows:

inertia(j-th category of B) = off-diagonal components +
1 − Qcj

Q2

inertia(j-th category of B̃) = off-diagonal components + δj

Subtracting the above (the “off-diagonal components” are the same) leads to:

inertia(jth category of B) − inertia(j-th category of B̃) =
1 − Qcj

Q2
− δj

which gives the value of δj :

δj =
1 − Qcj

Q2
−
(
inertia(j-th category of B) − inertia(j-th category of B̃)

)
(A.33)

Discounting this amount from the j-th category’s inertia and similarly from
the sum of the components of inertia in two dimensions gives the relative
contributions (qualities) with respect to the two-dimensional JCA solution:

cj g̃
2
j1 + cj g̃

2
j2 − δj

(
∑

k cj g̃2
jk) − δj

(A.34)

where g̃jk is the principal coordinate of category j on axis k in the CA of B̃
(JCA solution), and the summation in the denominator is for all the dimen-
sions. Notice that

∑
j δj = ∆ (i.e., summing (A.33) gives (A.31)).

Adjusted
inertias in MCA

The MCA solution can be adjusted to optimize the fit to the off-diagonal
tables (this could be called a JCA conditional on the MCA solution). The op-
timal adjustments can be determined by weighted least-squares, as described
in Chapter 19, but the problem is that the solution is not nested. So we prefer
slightly sub-optimal adjustments which retain the nesting property and are
very easy to compute from the MCA solution of the Burt matrix. The adjust-
ments are made as follows (see Chapter 19, pages 148–149, for an illustration):

Adjusted total inertia of Burt matrix:

adjusted total inertia = Q

Q − 1
×
(

inertia of B− J − Q

Q2

)
(A.35)
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Adjusted principal inertias (eigenvalues) of Burt matrix:

λadj
k =

(
Q

Q − 1

)2

×
(√

λk − 1
Q

)2

, k = 1, 2, . . . (A.36)

Here λk refers to the k-th principal inertia of the Burt matrix; hence
√

λk is
the k-th principal inertia of the indicator matrix. The adjustments are made
only to those dimensions for which

√
λk > 1

Q and no further dimensions are
used — hence percentages of inertia do not add up to 100%. It can be proved
that these percentages are lower bound estimates of those that are obtained
in a JCA, and in practice they are close to the JCA percentages.

Subset CA and
subset MCA

Subset CA is simply the application of the same CA algorithm to a selected
part of the standardized residual matrix S in (A.4) (not to the subset of
the original matrix). The masses of the full matrix are thus retained and all
subsequent calculations are the same, except they are applied to the subset.
Suppose that the columns are subsetted, but not the rows. Then the rows still
maintain the centring property of CA; i.e., their weighted averages are at the
origin of the map, whereas the columns are no longer centred. Subset MCA
is performed by applying subset CA on a submatrix of the indicator matrix
or the Burt matrix. In the case of the Burt matrix, a selection of categories
implies that this subset has to be specified for both the rows and columns.

Analysis of square
asymmetric tables

If the data matrix N is square asymmetric, where both rows and columns
refer to the same objects, then N can be written as the sum of symmetric and
skew-symmetric parts:

N = 1

2
(N + NT) + 1

2
(N− NT) (A.37)

= symmetric + skew-symmetric

CA is applied to each part separately, but with a slight variation for the
skew-symmetric part. The analysis of the symmetric part 1

2 (N + NT) is the
usual CA — this provides one set of coordinates, and the masses are the
averages of the row and column masses corresponding to the same object:
wi = 1

2 (ri + ci). The analysis of the skew-symmetric part 1
2 (N − NT) is the

application of the CA algorithm without centring and using the same masses
as in the symmetric analysis; i.e., the “standardized residuals” matrix of (A.4)
is rather the “standardized differences” matrix

S = D− 1
2

w [1
2
(P − PT)]D− 1

2
w (A.38)

where P is the correspondence matrix and Dw is the diagonal matrix of the
masses wi. As described in Chapter 22, both these analyses are subsumed in
the ordinary CA of the block matrix[

N NT

NT N

]
(A.39)
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If N is an I × I matrix, then the 2I − 1 dimensions which emanate from this
CA can be easily allocated to the symmetric and skew-symmetric solutions
since the symmetric dimensions have unique principal inertias while the skew-
symmetric dimensions occur in pairs with equal principal inertias. Similarly
the coordinate vectors for each dimension have two parts: for dimensions cor-
responding to the symmetric analysis these are simple repeats on each other,
while for dimensions corresponding to the skew-symmetric analysis these are
repeats with a change of sign (see Chapter 22 for an example).

Canonical CA In canonical CA (CCA) an additional matrix X of explanatory (independent)
variables is available, and the requirement is that the dimensions be linearly
related to X. The total inertia is split into two parts: a part that is linearly re-
lated to the independent variables, called the inertia in the constrained space,
and a part that is not, the inertia in the unconstrained space. CCA is neces-
sarily an “asymmetric” method since X is an additional set of either rows or
columns. The usual data structure is that the rows are sampling units and
X is an additional set of M columns, i.e., I × M . There is a regression step
in CCA which calculates the I × J constrained matrix, whose columns are
linearly related to X. The difference between P and the constrained matrix is
the unconstrained matrix, whose columns are not linearly related to X. CCA
thus consists of applying CA to the constrained matrix and (optionally) to
the unconstrained matrix. In each application the original row and column
masses are maintained for all computations, and the various results such as
coordinates, principal inertias, contributions, reconstruction formula, etc., are
the same as in a regular application of CA. We assume that the columns of X
are standardized, using the row masses as weights in the calculation of means
and variances. If there are some categorical independent variables, these are
coded as dummy variables, dropping one category of each variable as in a
conventional regression analysis. The retained dummy variables are then also
standardized in the same way as the columns of X.
The steps in CCA are as follows:

CCA Step 1 — Calculate the standardized residuals matrix S as in CA:

S = D− 1
2

r (P − rcT)D− 1
2

c (A.40)

CCA Step 2 — Calculate the I×I projection matrix, of rank M , which projects
onto the constrained space:

Q = D
1
2
r X(XTDrX)−1XTD

1
2
r (A.41)

CCA Step 3 — Project the standardized residuals to obtain the constrained
matrix:

S� = QS (A.42)

CCA Step 4 — Apply CA Steps 1–6 (page 202) to S�:

CCA Step 5 — Principal inertias λ�
k in constrained space:

λ�
k = α2

k, k = 1, 2, . . . , K where K = min{I − 1, J − 1, M} (A.43)
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CCA Step 5 (optional) — Project the standardized residuals onto the uncon-
strained space:

S⊥ = (I − Q)S = S − S� (A.44)

CCA Step 6 (optional) — Apply CA Steps 1–6 to S⊥.

As described in Chapter 24, the principal inertias in (A.43) can be expressed
as percentages of the total inertia, or as percentages of the constrained inertia,
which is the sum of squares of the elements in S�, equal to

∑
k λ�

k.

Table for testing
for significant
clustering or
significant
dimensions

In the case of a contingency table based on a random sample, the first principal
inertia can be tested for statistical significance. This is the same test as was
used in the case of the Ward clustering of Chapter 15. In that case a critical
level for clustering, on the χ2 scale, can be determined from the table in
Exhibit A.1 below, according to the size of the table (see page 119 for the
food store example, a 5× 4 table for which the critical point in Exhibit A.1 is
15.24). These critical points are the same for testing the first principal inertia
for significance. For example, in the same example of the food stores, given in
Exhibit 15.3, the first principal inertia was 0.02635, which if expressed as a χ2

component is 0.02635 × 700 = 18.45. Since 18.45 is greater than the critical
point 15.24, the first principal inertia is statistically significant (at the 5%
level).

Exhibit A.1:
Critical values for
multiple
comparisons test on
a I × J (or J × I)
contingency table.
The same critical
points apply to
testing the
significance of a
principal inertia.
Significance level is
5%.

J

I 3 4 5 6 7 8 9 10 11

3 8.59
4 10.74 13.11
5 12.68 15.24 17.52
6 14.49 17.21 19.63 21.85
7 16.21 19.09 21.62 23.95 26.14
8 17.88 20.88 23.53 25.96 28.23 30.40
9 19.49 22.62 25.37 27.88 30.24 32.48 34.63
10 21.06 24.31 27.15 29.75 32.18 34.50 36.70 38.84
11 22.61 25.96 28.90 31.57 34.08 36.45 38.72 40.91 43.04
12 24.12 27.58 30.60 33.35 35.93 38.36 40.69 42.93 45.10
13 25.61 29.17 32.27 35.09 37.73 40.22 42.60 44.90 47.12

Source: Pearson, E.S. & Hartley, H.O. (1972). Biometrika Tables for Statisticians,
Volume 2: Table 51. Cambridge University Press, UK.
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