Correspondence Analysis and Related Methods

Michael Greenacre

Universitat Pompeu Fabra
 Barcelona

www.econ.upf.edu/~michael

www.globalsong.net

PROGRAM

Monday
May 10, 12:00 pm - 4:00 pm - SR Statistik
Tuesday
Wednesday
May 11, 2:00 pm - 6:00 pm - 2H564 (PC Labor Statistik)

Wednesday
Monday
May 12, 12:00 pm - 2:00 pm - SR Statistik

Tuesday May 18, 2:00 pm - 4:00 pm - 2H564 (PC Labor Statistik)
Wednesday
May 19, 2:00 pm - 4:00 pm - SR Statistik
Tuesday May 25, 10:00 am - 12:00-2H564 (PC Labor Statistik)
Wednesday

COURSE CONTENTS: main themes

Theme 1: Introduction to multivariate data and multivariate analysis
Theme 2: Geometric concepts of correspondence analysis and related methods

Theme 3: Theory of correspondence analysis and related methods: the SVD

Theme 4: Biplots
Theme 5: Diagnostics for interpretation
Theme 5: Multiple \& joint correspondence analysis
Theme 6: Extension to other types of data: ratings, rankings, square matrices

Theme 7: Investigating stability using bootstrap; testing hypotheses using permutation test

BIBLIOGRAPHY and SUPPORTING MATERIAL

Greenacre, M. and Blasius, J. (2006). Multiple Correspondence Analysis and Related Methods. Chapman \& Hall /CRC Press.

Greenacre, M. (2007). Correspondence Analysis in Practice, 2nd edition. Chapman \& Hall/ CRC Press.

Some PDFs of selected articles...

Web page of course material and R scripts:
www.econ.upf.edu/~michael/CARME

Introduction to multivariate data and multivariate analysis

Introduction to multivariate data

- Let's start with some simple trivariate data...

Continuous variables
X1 - Purchasing power/capita (euros)
X2 - GDP/capita (index)
X3 - inflation rate (\%)

Count variables
C1 - Glance reader
C2 - Fairly thorough reader
C3 - Very thorough reader

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
It	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Education
Some primary

Primary completed
Some secondary
Secondary completed
Some tertiary

	C1	C2	C3
E1	5	7	2
E2	18	46	20
E3	19	29	39
E4	12	40	49
E5	3	7	16

Visualizing trivariate continuous data

Continuous variables
X1 - Purchasing power/capita (euros)
X2 - GDP/capita (index)
X3 - inflation rate (\%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
$\mathbf{G r}$	Greece	18800	94.3	4.2
$\mathbf{S p}$	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
$\mathbf{I r}$	Ireland	20800	135.4	3.1
It	Italy	18200	101.8	3.5
$\mathbf{L u}$	Luxembourg	28800	276.4	4.1
$\mathbf{N e}$	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Visualizing trivariate continuous data

Continuous variables
X1 - Purchasing power/capita (euros)
X2 - GDP/capita (index)
X3 - inflation rate (\%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
It	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Visualizing trivariate continuous data

Continuous variables
X1 - Purchasing power/capita (euros
X2 - GDP/capita (index)
X3 - inflation rate (\%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
$\mathbf{S p}$	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
It	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Visualizing trivariate continuous data

Continuous variables
cor $X 1 \quad X 2 \quad X 3$

X1 - Purchasing power/capita (euro
X2 - GDP/capita (index)
X3 - inflation rate (\%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
It	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Visualizing trivariate count data

Count variables

C1 - Glance reader
C2 - Fairly thorough reader
C3 - Very thorough reader
row profiles
Education
Primary incomplete
Primary completed
Secondary incomplete
Secondary completed
Some tertiary

Visualizing trivariate count data

Count variables
C1 - Glance reader
C2 - Fairly thorough reader
C3 - Very thorough reader row profiles

Visualizing trivariate count data

Count variables
C1 - Glance reader
C2 - Fairly thorough reader
C3 - Very thorough reader
row profiles

Education	E1	C1	C2	C3	
		. 36	. 50	. 14	
Primary completed	E2	. 21	. 55	. 24	1
Some secondary	E3	. 22	. 33	. 45	1
Secondary completed	E4	. 12	. 40	. 49	1
Some tertiary	E5	. 12	. 27	. 62	1
	C1		0	0	1
	C2	1	0	0	1
	C3			0	

This is almost a correspondence analysis!

A basic scheme of multivariate analysis

All multivariate methods fall basically into two types, depending on the data structure and the question being asked:

Four corners of multivariate analysis

Basic geometric concepts of correspondence analysis and related methods (principal component analysis, logratio analysis, discriminant analysis, multidimensional scaling...

Basic geometric concepts

- 312 respondents, all readers of a certain newspaper, cross-tabulated according to their education group and level of reading of the newspaper

	C1 C2 C3		
E1	5	7	2
E2	18	46	20
E3	19	29	39
E4	12	40	49
E5	3	7	16

- E1: some primary E2: primary completed E3: some secondary E4: secondary completed E5: some tertiary
- C1: glance C2: fairly thorough C3: very thorough
- We use this simple example to explain the three basic concepts of CA: profile, mass and (chi-square) distance

Three basic geometric concepts

profile - the coordinates (position) of the point
mass - the weight given to the point
(chi-square) distance - the measure of proximity between points

Profile

- A profile is a set of relative frequencies, that is a set of frequencies expressed relative to their total (often in percentage form).
- Each row or each column of a table of frequencies defines a different profile.
- It is these profiles which CA visualises as points in a map.

original data				
	C1	C2	c3	
E1	5	7	2	14
E2	18	46	20	84
E3	19	29	39	87
E4	12	40	49	101
E5	3	7	16	26
	57	129	126	312

row profiles

column profiles

	C1	C2	C3	
E1	. 09	. 05	. 02	. 05
E2	. 32	. 37	. 16	. 27
E3	. 33	. 22	. 31	. 28
E4	. 21	. 31	. 39	. 32
E5	. 05	. 05	. 13	. 08
	1	1	1	1

Row profiles viewed in 3-d

Plotting profiles in profile space (triangular coordinates)

Weighted average (centroid)

The average is the point at which the two points are balanced.

The situation is identical for multidimensional points...

Plotting profiles in profile space (barycentric - or weighted average - principle)

Plotting profiles in profile space

(barycentric - or weighted average - principle)

Plotting profiles in profile space (barycentric - or weighted average - principle)

Masses of the profiles

original data

	C1	C2	C3	14	masses
E1	5	7	2		. 045
E2	18	46	20	84	. 269
E3	19	29	39	87	. 279
E4	12	40	49	101	. 324
E5	3	7	16	26	. 083
	57	129	126	312	1

average			
row profile	.183	.413	.404

Readership data

	Education Group	C1	C2	C3	Total	Mass
E1	Some primary	5 (0.357)	7 (0.500)	2 (0.143)	14	0.045
E2	Primary completed	18 (0.214)	46 (0.548)	20 (0.238)	84	0.269
E3	Some secondary	19 (0.218)	29 (0.333)	39 (0.448)	87	0.279
E4	Secondary completed	12 (0.119)	40 (0.396)	49 (0.485)	101	0.324
E5	Some tertiary	3 (0.115)	7 (0.269)	16 (0.615)	26	$\mathbf{0 . 0 8 3}$
	Total	57 (0.183)	129 (0.413)	126 (0.404)	312	

Calculating chi-square

$$
\begin{aligned}
\chi^{2}= & 12 \text { similar terms } \ldots \\
& +{\frac{(3-4.76)^{2}}{4.76}+{\left.\frac{(7-10.74}{10.74}\right)^{2}}^{2}+\frac{(16-10.50)^{2}}{10.50}}_{=}=26.0
\end{aligned}
$$

 For example, expected frequency of (E5,C1): $0.183 \times 26=4.76$

Calculating chi-square

$\chi^{2}=12$ similar terms
$+26\left[\frac{(3 / 26-4.76 / 26)^{2}}{4.76 / 26}+\frac{(7 / 26-10.74 / 26)^{2}}{10.74 / 26}+\frac{(16 / 26-10.50 / 26)^{2}}{10.50 / 26}\right]$
$\chi^{2} / 312=12$ similar terms \ldots.
$\left.+0.083\left[\frac{(0.115-0.183}{0.183}\right)^{2}+\frac{(0.269-0.413)^{2}}{0.413}+\frac{(0.615-0.404)^{2}}{0.404}\right]$

	Education Group	C 1	C 2	C 3	Total	Mass
		$\ldots .$.	\ldots.	\ldots.	14	\ldots
		\ldots	\ldots	\ldots.	84	\ldots.
		\ldots.	\ldots	\ldots.	87	\ldots.
Es	Observed Frequency Some tertiary Expected Frequency	3 (0.115) 4.76	7 (0.269) 10.74	16 (0.615) 10.50	26	0.083
	Total	57 (0.183)	129 (0.413)	126 (0.404)	312	

Calculating inertia

Inertia $=\chi^{2} / 312=$ similar terms for first four rows ...
$+0.083\left[\frac{(0.115-0.183)^{2}}{0.183}+\frac{(0.269-0.413)^{2}}{0.413}+\frac{(0.615-0.404)^{2}}{0.404}\right]$
mass
(of row E5)
squared chi-square distance
(between the profile of E5 and the
average profile)
Inertia $=\sum$ mass $\times(\text { chi-square distance })^{2}$
$\frac{(0.115-0.183)^{2}}{0.183}+\frac{(0.269-0.413)^{2}}{0.413}+\frac{(0.615-0.404)^{2}}{0.404}$ EUCLIDEAN

How can we see chi-square distances?

$$
\begin{aligned}
& \text { Inertia }=\chi^{2} / 312=\text { similar terms for first four rows } \ldots \\
& +0.083\left[\frac{(0.115-0.183)^{2}}{0.183}+\frac{(0.269-0.413)^{2}}{0.413}+\frac{(0.615-0.404)^{2}}{0.404}\right]
\end{aligned}
$$

mass (of row E5)
squared chi-square distance (between the profile of E5 and the average profile)

$$
\left(\frac{0.115}{\sqrt{0.183}} \sqrt{0} \frac{0.183}{183}\right)^{2}+\left(\frac{0.269}{\sqrt{0.413}} \sqrt{0.413} \frac{0.413}{2}+\sqrt{(0.404} \sqrt{0.615}-\frac{0.404}{\sqrt{0}}\right)^{2}
$$

So the answer is to divide all profile elements by the $\sqrt{ }$ of their averages

"Stretched" row profiles viewed in 3-d chi-squared space

"Pythagorian" ordinary Euclidean distances

Chi-square distances

Three basic geometric concepts

\odot
profile - the coordinates (position) of the point mass - the weight given to the point (chi-square) distance - the measure of proximity between points

Four derived geometric concepts

$$
\text { inertia }=\sum_{i} m_{i} d_{i}^{2}
$$

subspace
centroid - the weighted average position
inertia - the weighted sum-of-squared distances to centroid
subspace - space of reduced dimensionality within the space (it will go through the centroid)
projection - the closest point in the subspace

Summary: Basic geometric concepts

- Profiles are rows or columns of relative frequencies, that is the rows or columns expressed relative to their respective marginals, or bases.
- Each profile has a weight assigned to it, called the mass, which is proportional to the original marginal frequency used as a base .
- The average profile is the the centroid (weighted average) of the profiles.
- Vertex profiles are the extreme profiles in the profile space ("simplex").
- Profiles are weighted averages of the vertices, using the profile elements as weights.
- The dimensionality of an $/ x /$ matrix $=\min \{/-1, J-1\}$
- The chi-square distance measures the difference between profiles, using an Euclidean-type function which standardizes each profile element by dividing by the square root of its expected value.
- The (total) inertia can be expressed as the weighted average of the squared chi-square distances between the profiles and their average.

The one-minute CA course

- The 'famous' smoking data.

staff	smoking class					
group		none	light	medium	heavy	sum
Senior managers	SM	4	2	3	2	11
Junior managers	JM	4	3	7	4	18
Senior employees	SE	25	10	12	4	51
Junior employees	JE	18	24	33	13	88
Secretaries	SC	10	6	7	2	25
	Sum	61	45	62	25	193

- Now for the one-minute course in correspondence analysis, possible thanks to dynamic graphics!

One minute CA course: slide 1

3 columns				
light				
SM	medium	heavy	sum	
SM	2	3	2	7
JM	3	7	4	14
SE	10	12	4	26
JE	24	33	13	70
SC	6	7	2	15

express relative to row sums
These are called "row profiles"

	light	medium	heavy	sum
SM	0.29	0.43	0.29	1
JM	0.21	0.50	0.29	1
SE	0.38	0.46	0.15	1
JE	0.34	0.47	0.19	1
SC	0.40	0.47	0.13	1

plot

One minute CA course: slide 2

Relative values of row sums are used to weight the row profiles
4 columns

	none	light	medium	heavy	sum
SM	4	2	3	2	11
JM	4	3	7	4	18
SE	25	10	12	4	51
JE	18	24	33	13	88
SC	10	6	7	2	25
sum	61	45	62	25	193

On minute CA course: slide 3

$$
\begin{array}{r}
\text { often rescale } \\
\text { result so that } \\
\text { rows and } \\
\text { columns have } \\
\text { same } \\
\text { dispersions } \\
\text { along the axes }
\end{array}
$$

Dimension reduction Joint display of rows and columns

Dimensional Transmogrifier

The "famous" smoking data: row problem

- Artificial example designed to illustrate two-dimensional maps

View of row profiles in 3-d

The "famous" smoking data: column problem

It seems like the column profiles, with 5 elements, are 4-dimensional, BUT there are only 4 points and 4 points lie exactly in 3 dimensions.
So the dimensionality of the columns is the same as the rows.
ave

.06
.09
.26
.46
.13

SM JM SE JE SC

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

View of column profiles in 3-d

View of both profiles and vertices in 3-d

What CA does...

- ... centres the row and column profiles with respect to their average profiles, so that the origin represents the average.
- ... re-defines the dimensions of the space in an ordered way: first dimension "explains" the maximum amount of inertia possible in one dimension; second adds the maximum amount to first (hence first two explain the maximum amount in two dimensions), and so on... until all dimensions are "explained".
- ... decomposes the total inertia along the principal axes into principal inertias, usually expressed as \% of the total.
- ... so if we want a low-dimensional version, we just take the first (principal) dimensions

The row and column problem solutions are closely related, one can be obtained from the other; there are simple scaling factors along each dimension relating the two problems.

Singular value decomposition

Generalized principal component analysis

Generalized SVD

We often want to associate weights on the rows and columns, so that the fit is by weighted least-squares, not ordinary least squares, that is we want to minimize

$$
\mathrm{RSS}=\sum_{i=1}^{n} \sum_{j=1}^{p} r_{i} c_{j}\left(x_{i j}-x_{i j}^{*}\right)^{2}
$$

$$
\begin{aligned}
& \mathbf{D}_{r}^{1 / 2} \mathbf{X} \mathbf{D}_{c}^{1 / 2}=\mathbf{U D}{ }_{\alpha} \mathbf{V}^{\top} \quad \text { where } \quad \mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}, \alpha_{1} \geq \alpha_{2} \geq \cdots \geq 0 \\
& \mathbf{X}=\mathbf{D}_{r}^{-1 / 2} \mathbf{U} \mathbf{D}_{\alpha}\left(\mathbf{D}_{c}^{-1 / 2} \mathbf{V}\right)^{\top} \\
& \mathbf{X}^{*}=\text { etc } \ldots
\end{aligned}
$$

Generalized principal component analysis

- Suppose we want to represent the (centred) rows of a matrix \mathbf{Y}, weighted by (positive) elements down diagonal of matrix \mathbf{D}_{r}, where distance between rows is in the (weighted) metric defined by matrix $\mathbf{D}_{m}{ }^{-1}$.
- Total inertia $=\sum_{i} \sum_{j} q_{i}\left(1 / m_{j}\right) y_{i j}{ }^{2}$
- $\mathbf{S}=\mathbf{D}_{q}^{1 / 2} \mathbf{Y} \mathbf{D}_{m}^{-1 / 2}=\mathbf{U} \mathbf{D}_{\alpha} \mathbf{V}^{\top}$ where $\mathbf{U}^{\top} \mathbf{U}=\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$
- Principal coordinates of rows: $\quad \mathbf{F}=\mathbf{D}_{q}^{-1 / 2} \mathbf{U} \mathbf{D}_{\alpha}$
- Principal axes of the rows:
$\mathbf{D}_{m}^{1 / 2} \mathbf{V}$
- Standard coordinates of columns: $\mathbf{G}=\mathbf{D}_{m}^{-1 / 2} \mathbf{V}$
- Variances (inertias) explained: $\lambda_{1}=\alpha_{1}{ }^{2}, \lambda_{2}=\alpha_{2}{ }^{2}, \ldots$

Correspondence analysis

Of the rows:

- \mathbf{Y} is the centred matrix of row profiles
- row masses in \mathbf{D}_{q} are the relative frequencies of the rows
- column weights in \mathbf{D}_{w} are the inverses of the relative frequencies of the columns
- Total inertia $=\chi^{2} / n$

Of the columns:

- \mathbf{Y} is the centred matrix of column profiles
- column masses in \mathbf{D}_{q} are the relative frequencies of the columns
- row weights in \mathbf{D}_{w} are the inverses of the relative frequencies of the rows
- Total inertia $=\chi^{2} / n$

Both problems lead to the SVD of the same matrix

Correspondence analysis

- Table of nonnegative data \mathbf{N}
- Divide \mathbf{N} by its grand total n to obtain the so-called correspondence matrix $\mathbf{P}=(1 / n) \mathbf{N}$
- Let the row and column marginal totals of \mathbf{P} be the vectors \mathbf{r} and \mathbf{c} respectively, that is the vectors of row and column masses, and \mathbf{D}_{r} and \mathbf{D}_{c} be the diagonal matrices of these masses

$$
\begin{aligned}
& \qquad \vdots \text { (to be derived algebraically in class) } \\
& \mathbf{S}=\mathbf{D}_{r}^{-1 / 2}\left(\mathbf{P}-\mathbf{r c}^{\top}\right) \mathbf{D}_{c}^{-1 / 2} \\
& \text { or equivalently }
\end{aligned}
$$

$$
\mathbf{S}=\mathbf{D}_{r}^{1 / 2}\left(\mathbf{D}_{r}^{-1} \mathbf{P} \mathbf{D}_{c}^{-1}-\mathbf{1 1}^{\top}\right) \mathbf{D}_{c}^{1 / 2}
$$

Principal coordinates

$$
\begin{aligned}
\mathbf{F} & =\mathbf{D}_{r}^{-1 / 2} \mathbf{U} \mathbf{D}_{\alpha} \\
\mathbf{G} & =\mathbf{D}_{c}^{-1 / 2} \mathbf{V} \mathbf{D}_{\alpha}
\end{aligned}
$$

Standard
$\boldsymbol{\Phi}=\mathbf{D}_{r}^{-1 / 2} \mathbf{U}$

$$
r_{i}\left(\frac{p_{i j}}{r_{i} c_{j}}-1\right) \sqrt{c_{j}}
$$

$\boldsymbol{\Gamma}=\mathbf{D}_{c}^{-1 / 2} \mathbf{V}$

Decomposition of total inertia along principal

 axesI rows (smoking $\mid=5$) $\quad J$ columns (smoking J=4)

Total inertia	in(I)	0.08519		$\operatorname{in}(J)$	0.08519
Inertia axis 1	λ_{1}	0.07476	(87.8%)	λ_{1}	0.07476
Inertia axis 2	λ_{2}	0.01002	(11.8%)	λ_{2}	0.01002
Inertia axis 3	λ_{3}	0.00041	(0.5%)	λ_{3}	0.00041

Duality (symmetry) of the rows and columns

Relationship between row and column solutions

rows

standard coordinates
principal coordinates

$$
\begin{array}{rlrl}
\text { rows } & \text { columns } \\
\Phi & =\left[\phi_{i k}\right] & \Gamma & \left\lceil\gamma_{j k}\right] \\
\mathbf{F} & =\left[f_{i k}\right] & \mathbf{G} & =\left[g_{j k}\right] \\
\mathbf{F} & =\Phi \mathbf{D}_{\alpha} & \mathbf{G} & =\Gamma \mathbf{D}_{\alpha} \\
f_{i k} & =\alpha_{k} x_{i k} & g_{j k} & =\alpha_{k} y_{j k}
\end{array}
$$

coordinates
where $\alpha_{k}=\sqrt{ } \lambda_{k}$ is the square root of the principal inertia on axis k

$$
\begin{aligned}
& \text { principal }=\text { standard } \times \alpha_{k} \\
& \text { standard }=\text { principal } / \alpha_{k}
\end{aligned}
$$

Data profiles in principal coordinates

Relationship between row and column solutions

Symmetric map using XLSTAT

Summary:
 Relationship between row and column solutions

1. \quad Same dimensionality $($ rank $)=\min \{I-1, J-1\}$
2. Same total inertia and same principal inertias $\lambda_{1}, \lambda_{2}, \ldots$, on each dimension (i.e., same decomposition of inertia along principal axes), hence same percentages of inertia on each dimension
3. "Same" coordinate solutions, up to a scalar constant along each principal axis, which depends on the square root $\sqrt{\lambda_{k}}=\alpha_{k}$ of the principal inertia on each axis:

$$
\begin{aligned}
& \text { principal }=\text { standard } \times \sqrt{ } \lambda_{k} \\
& \text { standard }=\text { principal } / \sqrt{ } \lambda_{k}
\end{aligned}
$$

4. Asymmetric map: one set principal, other standard
5. Symmetric map: both sets principal
