Correspondence Analysis and Related Methods

Michael Greenacre Universitat Pompeu Fabra Barcelona

www.econ.upf.edu/~michael

www.globalsong.net

10-26 May 2010

PROGRAM

Monday	May 10,	12:00 pm – 4:00 pm – SR Statistik
Tuesday	May 11,	2:00 pm – 6:00 pm – 2H564 (PC Labor Statistik)
Wednesday	May 12,	12:00 pm – 2:00 pm – SR Statistik
Wednesday	May 12,	2:00 pm – 4:00 pm – 2H564 (PC Labor Statistik)
Monday	May 17,	12:00 pm – 2:00 pm – SR Statistik
Tuesday	May 18,	2:00 pm – 4:00 pm – 2H564 (PC Labor Statistik)
Wednesday	May 19,	2:00 pm – 4:00 pm – SR Statistik
Tuesday	May 25,	10:00 am - 12:00 - 2H564 (PC Labor Statistik)
Wednesday	May 26,	10:00 am - 12:00 - SR Statistik

COURSE CONTENTS: main themes

Theme 1: Introduction to multivariate data and multivariate analysis

- Theme 2: Geometric concepts of correspondence analysis and related methods
- Theme 3: Theory of correspondence analysis and related methods: the SVD

Theme 4: Biplots

- Theme 5: Diagnostics for interpretation
- Theme 5: Multiple & joint correspondence analysis
- Theme 6: Extension to other types of data: ratings, rankings, square matrices
- Theme 7: Investigating stability using bootstrap; testing hypotheses using permutation test

BIBLIOGRAPHY and SUPPORTING MATERIAL

Greenacre, M. and Blasius, J. (2006). Multiple Correspondence Analysis and Related Methods. Chapman & Hall /CRC Press.

Greenacre, M. (2007). Correspondence Analysis in Practice, 2nd edition. Chapman & Hall/ CRC Press.

Some PDFs of selected articles...

Web page of course material and R scripts:

www.econ.upf.edu/~michael/CARME

Introduction to multivariate data and multivariate analysis

Introduction to multivariate data

• Let's start with some simple trivariate data...

Continuous variables

- X1 Purchasing power/capita (euros)
- X2 GDP/capita (index)
- X3 inflation rate (%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

Count variables

- C1 Glance reader
- C2 Fairly thorough reader
- C3 Very thorough reader

Education		C1	C2	C3
Some primary	E 1	5	7	2
Primary completed	E2	18	46	20
Some secondary	E 3	19	29	39
Secondary completed	E4	12	40	49
Some tertiary	E5	3	7	16

Visualizing trivariate continuous data

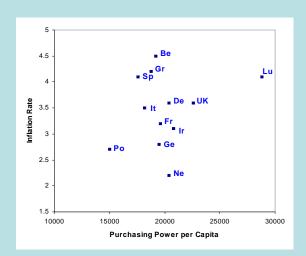
Continuous variables

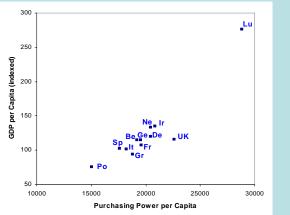
X1 – Purchasing power/capita (euros)

X2 - GDP/capita (index)

X3 - inflation rate (%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6





Visualizing trivariate continuous data

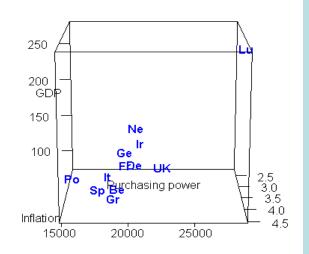
Continuous variables

X1 – Purchasing power/capita (euros)

X2 - GDP/capita (index)

X3 - inflation rate(%)

	Country	X1	X2	X3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr 👘	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6



Visualizing trivariate continuous data

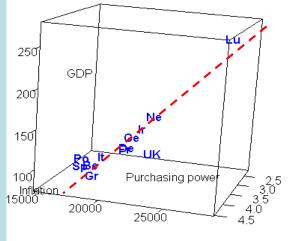
Continuous variables

X1 – Purchasing power/capita (euros

X2 - GDP/capita (index)

X3 - inflation rate(%)

	Country	X1	X2	ХЗ
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
Ir	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6



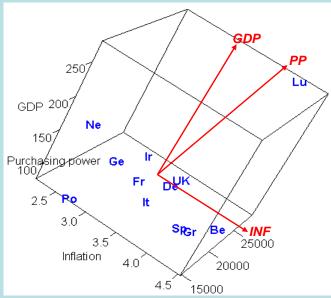
Visualizing trivariate continuous data

Continuous variables

X1 – Purchasing power/capita (euro X2 – GDP/capita (index) X3 – inflation rate (%)

	Country	X1	X2	Х3
Be	Belgium	19200	115.2	4.5
De	Denmark	20400	120.1	3.6
Ge	Germany	19500	115.6	2.8
Gr	Greece	18800	94.3	4.2
Sp	Spain	17600	102.6	4.1
Fr	France	19600	108.0	3.2
lr	Ireland	20800	135.4	3.1
lt	Italy	18200	101.8	3.5
Lu	Luxembourg	28800	276.4	4.1
Ne	Netherlands	20400	134.0	2.2
Po	Portugal	15000	76.0	2.7
UK	United Kingdom	22600	116.2	3.6

cor	X1	X2	ХЗ
X1	1.000 ().929 (0.243
Х2	0.929 2	1.000 (0.207
ХЗ	0.243 ().207 ⁻	1.000



Visualizing trivariate count data

Count variables

C1 – Glance reader

C2 – Fairly thorough reader

C3 – Very thorough reader

						row	prof	iles	
Education		C1	C2	C 3		C1	C2	C 3	
Primary incomplete	E1	5	7	2	<i>14</i> E1	.36	.50	.14	1
Primary completed	E2	18	46	20	<i>84</i> E2	.21	.55	.24	1
Secondary incomplete	E3	19	29	39	87 → E3	.22	.33	.45	1
Secondary completed	E4	12	40	49	101 E4	.12	.40	.49	1
Some tertiary	E5	3	7	16	263 E5	.12	.27	.62	1

Visualizing trivariate count data

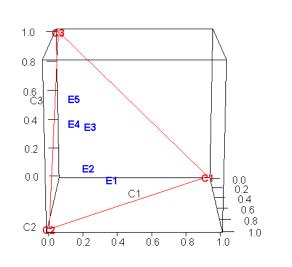
Count variables

C1 – Glance reader C2 – Fairly thorough reader

C3 - Very thorough reader

row profiles

Education		C1	C2	C 3	_
Some primary	E 1	.36	.50	.14	1
Primary completed	E2	.21	.55	.24	1
Some secondary	E3	.22	.33	.45	1
Secondary completed	E4	.12	.40	.49	1
Some tertiary	E5	.12	.27	.62	1
	C1	1	0	0	1
	C2	1	0	0	1
	C3	1	0	0	1

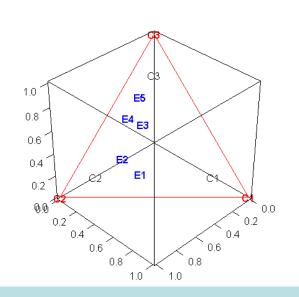


Visualizing trivariate count data

Count variables

C1 – Glance reader C2 – Fairly thorough reader C3 – Very thorough reader

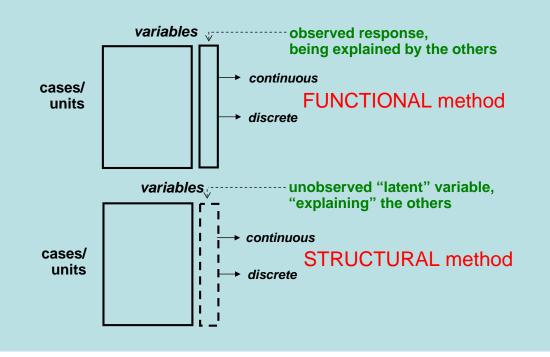
		row	prof	iles	
Education		C1	C2	С3	_
Some primary	E1	.36	.50	.14	1
Primary completed	E2	.21	.55	.24	1
Some secondary	E3	.22	.33	.45	1
Secondary completed	E4	.12	.40	.49	1
Some tertiary	E5	.12	.27	.62	1
	C1	1	0	0	1
	C2	1	0	0	1
	C3	1	0	0	1



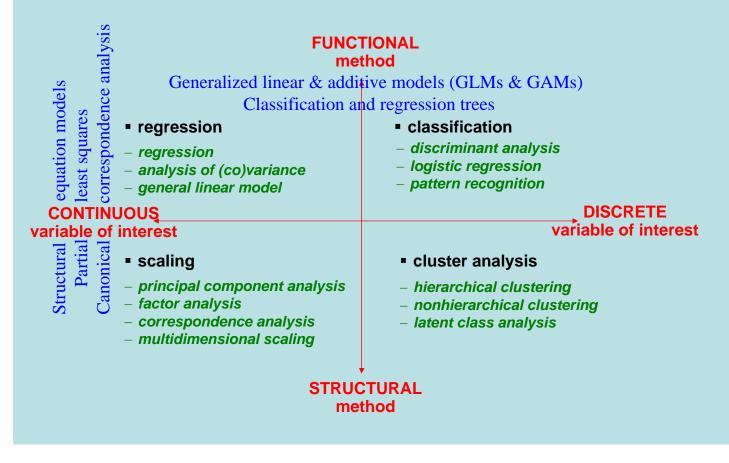
This is almost a correspondence analysis!

A basic scheme of multivariate analysis

All multivariate methods fall basically into two types, depending on the data structure and the question being asked:



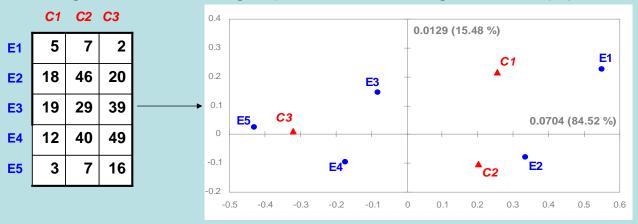
Four corners of multivariate analysis



Basic geometric concepts of correspondence analysis and related methods (principal component analysis, logratio analysis, discriminant analysis, multidimensional scaling...

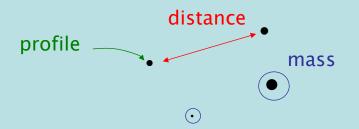
Basic geometric concepts

 312 respondents, all readers of a certain newspaper, cross-tabulated according to their education group and level of reading of the newspaper



- E1: some primary E2: primary completed E3: some secondary E4: secondary completed E5: some tertiary
- C1: glance C2: fairly thorough C3: very thorough
- We use this simple example to explain the three basic concepts of CA: profile, mass and (chi-square) distance

Three basic geometric concepts



profile - the coordinates (position) of the point

mass - the weight given to the point

(chi-square) distance - the measure of proximity between points

Profile

- A profile is a set of relative frequencies, that is a set of frequencies expressed relative to their total (often in percentage form).
- Each row or each column of a table of frequencies defines a different profile.
- It is these profiles which CA visualises as points in a map.

original data

	C1	C2	C 3	
E1	5	7	2	14
E2	18	46	20	84
E3	19	29	39	87
E4	12	40	49	101
E5	3	7	16	26
	57	129	126	312

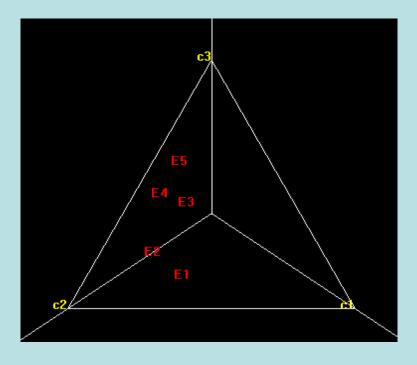
row profiles

	C1	C2	СЗ	
E1	.36	.50	.14	1
E2	.21	.55	.24	1
E3	.22	.33	.45	1
E4	.12	.40	.49	1
E5	.12	.27	.62	1
	.18	.41	.40	1

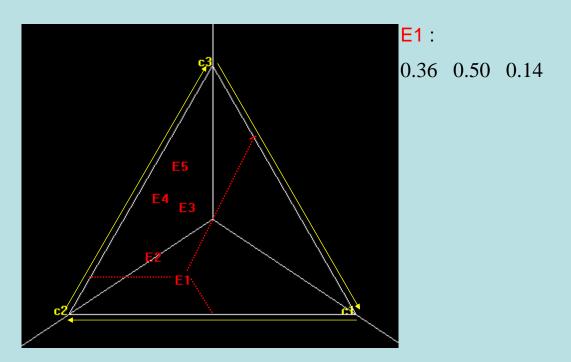
column profiles

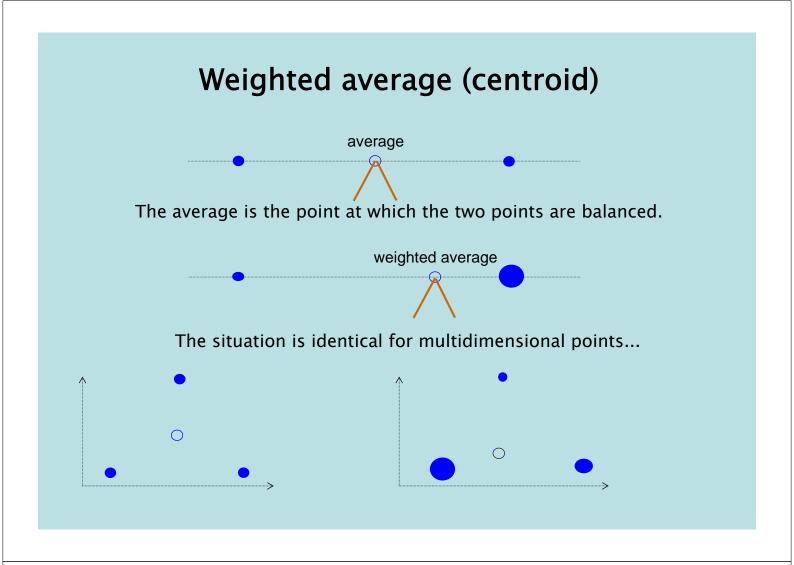
	C 1	C2	C3	
E1	.09	.05	.02	.05
E2	.32	.37	.16	.27
E3	.33	.22	.31	.28
E4	.21	.31	.39	.32
E5	.05	.05	.13	.08
	1	1	1	1

Row profiles viewed in 3-d

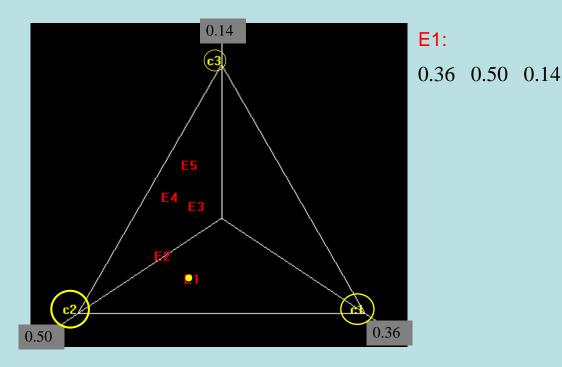


Plotting profiles in profile space (triangular coordinates)



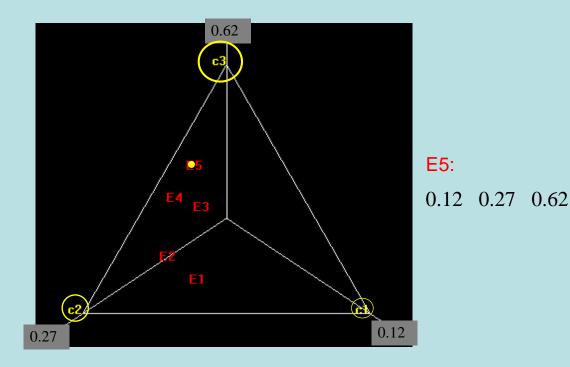


Plotting profiles in profile space (barycentric – or weighted average – principle)



Plotting profiles in profile space (barycentric – or weighted average – principle)

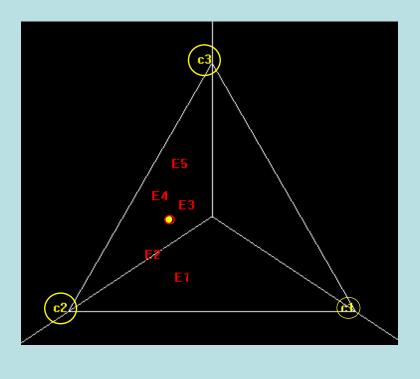
Plotting profiles in profile space (barycentric - or weighted average - principle)



Masses of the profiles

original data

	C1	C2	C 3		masses
E1	5	7	2	14	.045
E2	18	46	20	84	.269
E3	19	29	39	87	.279
E4	12	40	49	101	.324
E5	3	7	16	26	.083
·	57	129	126	312	1
average row profile	.183	.413	.404	1	



Readership data

	Education Group	C1	C2	C3	Total	Mass
E1	Some primary	5 (0.357)	7 (0.500)	2 (0.143)	14	0.045
E2	Primary completed	18 <i>(0.214)</i>	46 <i>(0.548)</i>	20 <i>(0.238)</i>	84	0.269
E3	Some secondary	19 <i>(0.218)</i>	29 <i>(0.333)</i>	39 <i>(0.448)</i>	87	0.279
E4	Secondary completed	12 <i>(0.119)</i>	40 <i>(0.396)</i>	49 <i>(0.485)</i>	101	0.324
E5	Some tertiary	3 (0.115)	7 (0.269)	16 <i>(0.615)</i>	26	0.083
	Total	57 (0.183)	129 (0.413)	126 (0.404)	312	

C1: glance C2: fairly thorough C3: very thorough

Calculating chi-square

$$\chi^2$$
 = 12 s

imilar terms

+
$$\left(\frac{3-4.76}{4.76}\right)^2$$
 + $\left(\frac{7-10.74}{10.74}\right)^2$ + $\left(\frac{16-10.50}{10.50}\right)^2$

26.0 =

	Education Group	C1	C2	C3	Total	Mass	
					14		
					84		
					87		For example, expected
					101		frequency of (E5,C1):
E5	Observed Frequency Some tertiary	3 (0.115) 4.76	7 (0.269) 10.74	16 (0.615) 10.50	26	0.083	$0.183 \times 26 = 4.76$
	Expected Freta liency	57 (0.183)	129 (0.413)	126 (0.404)	312		

Calculating chi-square χ^2 = 12 similar terms + $26 \left[\frac{(3/26 - 4.76/26)^2}{4.76/26} + \frac{(7/26 - 10.74/26)^2}{10.74/26} + \frac{(16/26 - 10.50/26)^2}{10.50/26} \right]^2$ χ^2 / **312** = 12 similar terms + 0.083 $\left[\frac{(0.115 - 0.183)^2}{0.183} + \frac{(0.269 - 0.413)^2}{0.413} + \frac{(0.615 - 0.404)^2}{0.404}\right]^2$ **C2** Education Group **C1 C3** Total Mass 14 84 87 101 **Observed Frequency** 7 16 3 (0.115) (0.269) (0.615) **E5** Some tertiary 26 0.083 4.76 10.74 10.50 **Expected Frequency** 129 126 57 Total 312 (0.183) (0.413) (0.404)

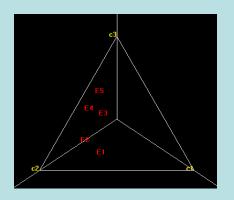
Calculating inertia

Inertia = $\chi^2 / _{312}$ = similar terms for first four rows ... + 0.083 $\left[\frac{(0.115 - 0.183)^2}{0.183} + \frac{(0.269 - 0.413)^2}{0.413} + \frac{(0.615 - 0.404)^2}{0.404} \right]$ mass (of row E5) squared chi-square distance (between the profile of E5 and the average profile) Inertia = $\sum mass \times (chi-square distance)^2$ $(\frac{0.115 - 0.183}{0.183})^2 + \frac{(0.269 - 0.413)^2}{0.413} + \frac{(0.615 - 0.404)^2}{0.404}$ EUCLIDEAN WEIGHTED

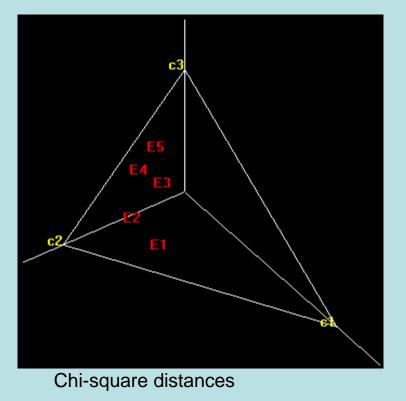
How can we see chi-square distances?

Inertia = $\chi^2 / _{312}$ = similar terms for first four rows ... + 0.083 $\left[\frac{(0.115 - 0.183)}{0.183}^2 + \frac{(0.269 - 0.413)}{0.413}^2 + \frac{(0.615 - 0.404)}{0.404}^2 \right]$ mass (of row E5) squared chi-square distance (between the profile of E5 and the average profile) $\left(\frac{0.115 - 0.183}{0.183} \right)^2 + \left(\frac{0.269 - 0.413}{0.413} \right)^2 + \left(\frac{0.615 - 0.404}{0.404} \right)^2$ EUCLIDEAN WEIGHTED $\int_{0.183} \frac{0.183}{\sqrt{0.183}} \right)^2 + \left(\frac{0.269}{0.413} - \frac{0.413}{\sqrt{0.413}} \right)^2 + \left(\frac{0.615}{0.404} - \frac{0.404}{\sqrt{0.404}} \right)^2$ So the answer is to divide all profile elements by the $\sqrt{}$ of their averages

"Stretched" row profiles viewed in 3-d chi-squared space



"Pythagorian" – ordinary Euclidean distances

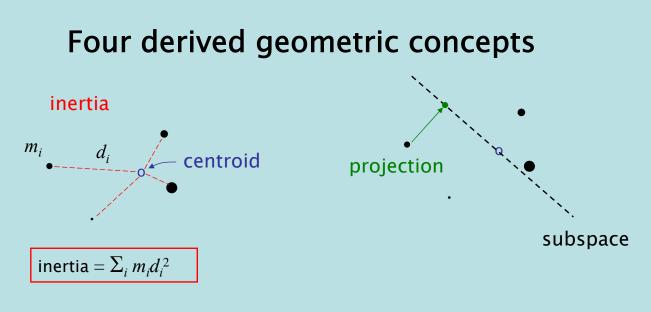


Three basic geometric concepts

profile - the coordinates (position) of the point

mass - the weight given to the point

(chi-square) distance - the measure of proximity between points



centroid – the weighted average position

inertia - the weighted sum-of-squared distances to centroid

subspace – space of reduced dimensionality within the space (it will go through the centroid)

projection – the closest point in the subspace

<u>Summary:</u> Basic geometric concepts

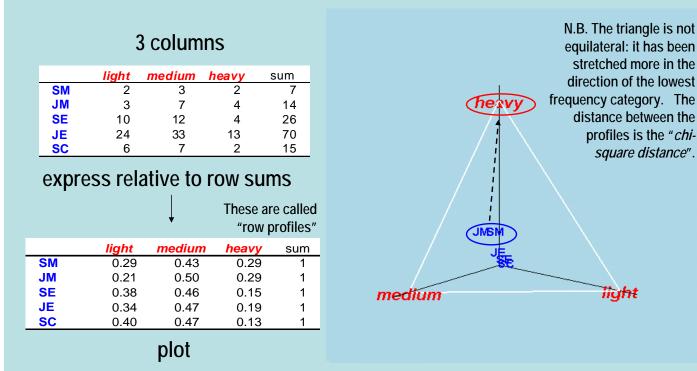
- Profiles are rows or columns of relative frequencies, that is the rows or columns expressed relative to their respective marginals, or bases.
- Each profile has a weight assigned to it, called the mass, which is proportional to the original marginal frequency used as a base.
- The average profile is the the centroid (weighted average) of the profiles.
- Vertex profiles are the extreme profiles in the profile space ("simplex").
- Profiles are weighted averages of the vertices, using the profile elements as weights.
- The dimensionality of an /x / matrix = min{/-1, /-1}
- The chi-square distance measures the difference between profiles, using an Euclidean-type function which standardizes each profile element by dividing by the square root of its expected value.
- The (total) inertia can be expressed as the weighted average of the squared chi-square distances between the profiles and their average.

The one-minute CA course

staff	smoking class					
group		none	light	medium	heavy	sum
Senior managers	SM	4	2	3	2	11
Junior managers	JM	4	3	7	4	18
Senior employees	SE	25	10	12	4	51
Junior employees	JE	18	24	33	13	88
Secretaries	SC	10	6	7	2	25
	sum	61	45	62	25	193

The 'famous' smoking data.

 Now for the one-minute course in correspondence analysis, possible thanks to dynamic graphics!



One minute CA course: slide 2

Relative values of row sums are used to weight the row profiles

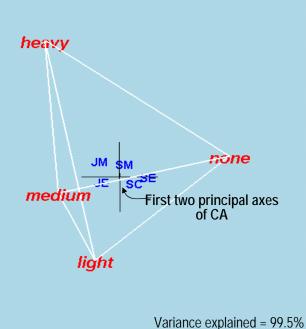
4 columns

	none	light	medium	heavy	sum				
SM	4	2	3	2	11				
JM	4	3	7	4	18				
SE	25	10	12	4	51				
JE	18	24	33	13	88				
SC	10	6	7	2	25				
sum	61	45	62	25	193				

express relative to row sums

			¥		
	none	light	medium	heavy	sum
SM	0.36	0.18	0.27	0.18	1
JM	0.22	0.17	0.39	0.22	1
SE	0.49	0.20	0.24	0.08	1
JE	0.20	0.27	0.38	0.15	1
SC	0.40	0.24	0.28	0.08	1
→sum	0.32	0.23	0.32	0.13	1
		tho r	alat		

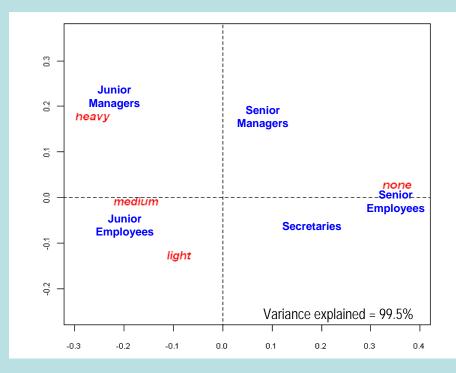
centre of the CA map



Valiance explained = 99.5%

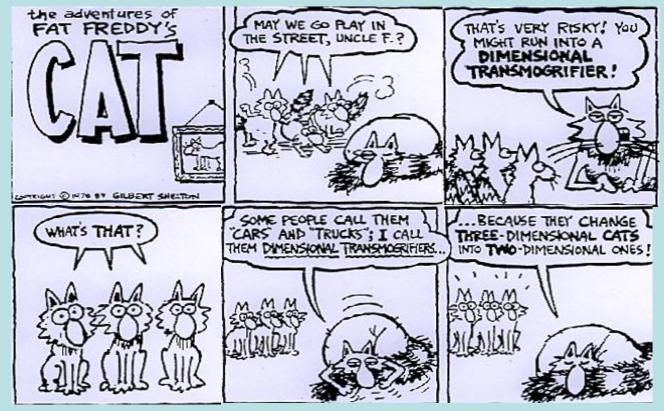
On minute CA course: slide 3

often rescale result so that rows and columns have same dispersions along the axes



Dimension reduction Joint display of rows and columns

Dimensional Transmogrifier



with thanks to Jörg Blasius

The "famous" smoking data: row problem

Artificial example designed to illustrate two-dimensional maps

	no	11
Senior managers SM	4	2
Junior managers JM	4	3
Senior employees SE	25	10
Junior employees JE	18	24
Secretaries SC	10	6

- b
 li
 me
 hv

 2
 3
 2

 3
 7
 4

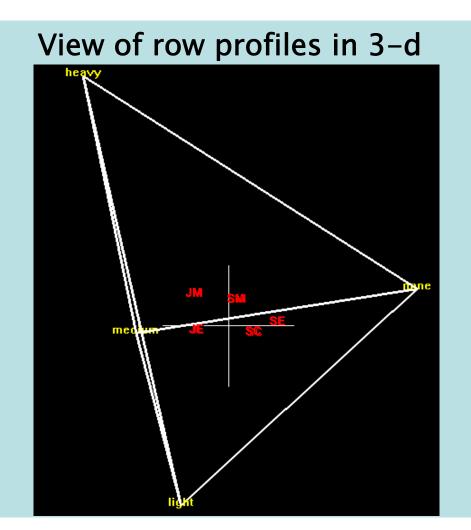
 10
 12
 4

 24
 33
 13

 6
 7
 2
- 193 employees of a firm
- •5 categories of staff group
- 4 categories of smoking (none/light/medium/heavy)

SM	.36	.18	.27	.18
JM	.22	.17	.39	.22
SE	.49	.20	.24	.08
JE	.20	.27	.38	.15
SC	.40	.24	.28	.08
ave	.32	.23	.32	.13
ave	.32	.23	.32	.13
ave none	.32 1	.23 0	.32 0	.13 0
none	1	0	0	0
none light	1 0	0 1	0 0	0 0

row profiles



The "famous" smoking data: column problem

It seems like the column profiles, with 5 elements, are 4-dimensional, BUT there are only 4 points and 4 points lie exactly in 3 dimensions.

So the dimensionality of the columns is the same as the rows.

	no	li	me	hv	_	
Senior managers SM	4	2	3	2		
Junior managers JM	4	3	7	4		
Senior employees SE	25	10	12	4		
Junior employees JE	18	24	33	13		
Secretaries SC	10	6	7	2		
г	no	li	↓ m		_	ave
				5 .0 1 .1		.06 .09
				· · · 9 .1		.26
promes				3.5		.46
	.16	.13	.1	1.0	8	.13

N / ·		C •1		ר ו
	llimn	nroti	in	≺_∩
View of	імнин			J-u

SM JM SE JE SC

0 0

1 0

0 1 0

0 0 1 0 0

0 0 0

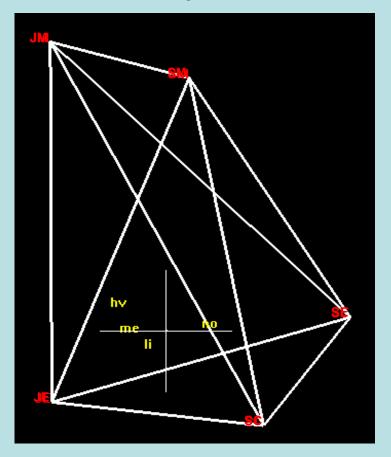
0 0 0

0

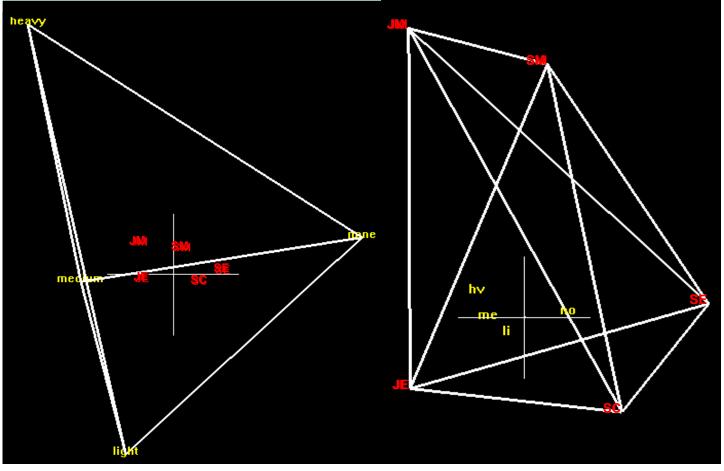
0 0

1 0

0 1



View of both profiles and vertices in 3-d



What CA does...

- ... centres the row and column profiles with respect to their average profiles, so that the origin represents the average.
- ... re-defines the dimensions of the space in an ordered way: first dimension "explains" the maximum amount of inertia possible in one dimension; second adds the maximum amount to first (hence first two explain the maximum amount in two dimensions), and so on... until all dimensions are "explained".
- ... decomposes the total inertia along the principal axes into principal inertias, usually expressed as % of the total.
- ... so if we want a low-dimensional version, we just take the first (principal) dimensions

The row and column problem solutions are closely related, one can be obtained from the other; there are simple scaling factors along each dimension relating the two problems.

Singular value decomposition

Generalized principal component analysis

Generalized SVD

We often want to associate weights on the rows and columns, so that the fit is by weighted least-squares, not ordinary least squares, that is we want to minimize n = p

$$RSS = \sum_{i=1}^{n} \sum_{j=1}^{p} r_i c_j (x_{ij} - x_{ij}^*)^2$$

 $\mathbf{D}_{r}^{1/2} \mathbf{X} \mathbf{D}_{c}^{1/2} = \mathbf{U} \mathbf{D}_{\alpha} \mathbf{V}^{\mathsf{T}}$ where $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$, $\alpha_{1} \ge \alpha_{2} \ge \cdots \ge 0$

$$\mathbf{X} = \mathbf{D}_r^{-1/2} \mathbf{U} \mathbf{D}_{\alpha} (\mathbf{D}_c^{-1/2} \mathbf{V})^{\mathsf{T}}$$

 $\mathbf{X}^* = etc...$

Generalized principal component analysis

- Suppose we want to represent the (centred) rows of a matrix Y, weighted by (positive) elements down diagonal of matrix D_r, where distance between rows is in the (weighted) metric defined by matrix D_m⁻¹.
- Total inertia = $\sum_{i} \sum_{j} q_i (1/m_j) y_{ij}^2$

•
$$\mathbf{S} = \mathbf{D}_q^{\frac{1}{2}} \mathbf{Y} \mathbf{D}_m^{-\frac{1}{2}} = \mathbf{U} \mathbf{D}_{\alpha} \mathbf{V}^{\mathsf{T}}$$
 where $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{I}$

- Principal coordinates of rows: $\mathbf{F} = \mathbf{D}_{a}^{-\frac{1}{2}} \mathbf{U} \mathbf{D}_{a}$
- Principal axes of the rows: $\mathbf{D}_m^{\frac{1}{2}} \mathbf{V}$
- Standard coordinates of columns: $\mathbf{G} = \mathbf{D}_m^{-\frac{1}{2}} \mathbf{V}$
- Variances (inertias) explained:

$$\lambda_1 = \alpha_1^2, \ \lambda_2 = \alpha_2^2, \dots$$

Correspondence analysis

Of the rows:

- Y is the centred matrix of row profiles
- row masses in D_q are the relative frequencies of the rows
- column weights in D_w are the inverses of the relative frequencies of the columns
- Total inertia = χ^2/n

Of the columns:

- Y is the centred matrix of column profiles
- column masses in \mathbf{D}_q are the relative frequencies of the columns
- row weights in D_w are the inverses of the relative frequencies of the rows
- Total inertia = χ^2/n

Both problems lead to the SVD of the same matrix

Correspondence analysis

Table of nonnegative data N

S

S

- Divide N by its grand total n to obtain the so-called <u>correspondence matrix</u> P = (1/n) N
- Let the row and column marginal totals of **P** be the vectors **r** and **c** respectively, that is the vectors of row and column <u>masses</u>, and \mathbf{D}_r and \mathbf{D}_c be the diagonal matrices of these masses

$$: (to be derived algebraically in class)$$

$$\mathbf{S} = \mathbf{D}_{r}^{-1/2} (\mathbf{P} - \mathbf{rc}^{\mathsf{T}}) \mathbf{D}_{c}^{-1/2}$$
or equivalently
$$\mathbf{S} = \mathbf{D}_{r}^{1/2} (\mathbf{D}_{r}^{-1} \mathbf{P} \mathbf{D}_{c}^{-1} - \mathbf{11}^{\mathsf{T}}) \mathbf{D}_{c}^{1/2}$$

$$\sqrt{r_{i}} \left(\frac{p_{ij}}{r_{i}c_{j}} - 1\right) \sqrt{c}$$

 $\mathbf{F} = \mathbf{D}_r^{-1/2} \mathbf{U} \mathbf{D}_{\alpha}$ $\mathbf{G} = \mathbf{D}_c^{-1/2} \mathbf{V} \mathbf{D}_{\alpha}$ Principal coordinates

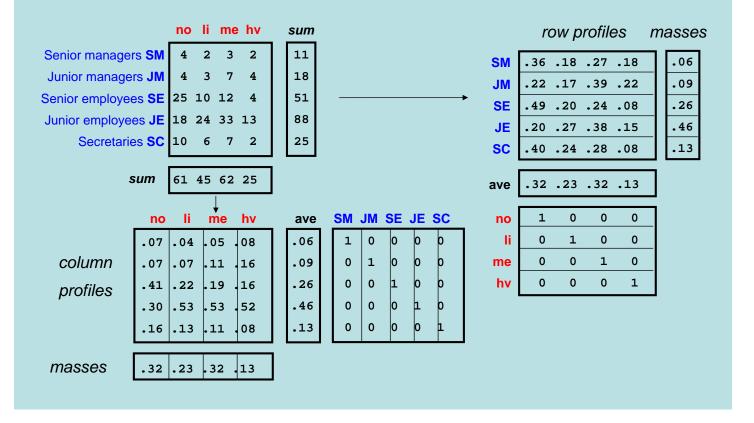
Standard coordinates

$$\Phi = \mathbf{D}_r^{-1/2} \mathbf{U}$$
$$\Gamma = \mathbf{D}_c^{-1/2} \mathbf{V}$$

Decomposition of total inertia along principal axes

	/ rows	(smoking I=	=5)	J columns	(smoking J = 4)	
Total inertia	in(<i>I</i>)	0.08519		in(J)	0.08519	
Inertia axis 1	λ_1	0.07476	(87.8%)	λ_1	0.07476	
Inertia axis 2	λ_2	0.01002	(11.8%)	λ_2	0.01002	
Inertia axis 3	λ_3	0.00041	(0.5%)	λ ₃	0.00041	

Duality (symmetry) of the rows and columns



Relationship between row and column solutions

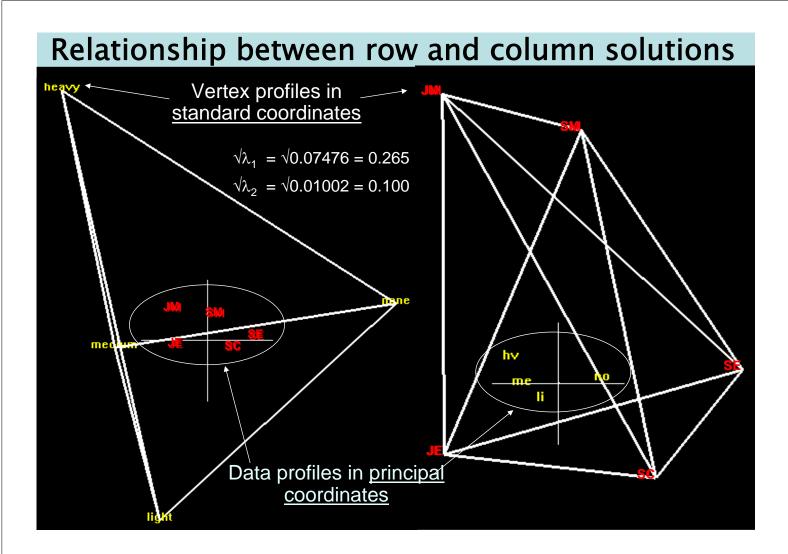
	rows	columns
standard coordinates	$\Phi = [\phi_{ik}]$	$\Gamma = [\gamma_{jk}]$
principal coordinates	$\mathbf{F} = [f_{ik}]$	$\mathbf{G} = [g_{jk}]$
relationships between	$\mathbf{F} = \mathbf{\Phi} \mathbf{D}_{\alpha}$	$\mathbf{G} = \Gamma \mathbf{D}_{\alpha}$
coordinates	$f_{ik} = \alpha_k x_{ik}$	$g_{jk} = \alpha_k y_{jk}$

where $\alpha_k = \sqrt{\lambda_k}$ is the square root of the principal inertia on axis k

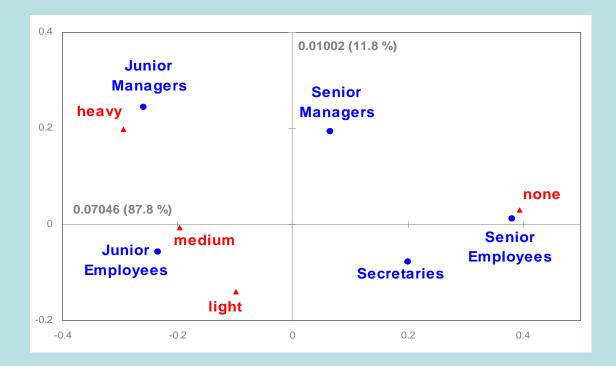
principal = standard × α_k

standard = principal / α_k

Data profiles in <u>principal</u> <u>coordinates</u> Vertiex profiles in standard coordinates



Symmetric map using XLSTAT



Summary:

Relationship between row and column solutions

- 1. Same dimensionality $(rank) = min\{I-1, J-1\}$
- 2. Same total inertia and same principal inertias $\lambda_1, \lambda_2, ...$, on each dimension (i.e., same decomposition of inertia along principal axes), hence same percentages of inertia on each dimension
- 3. "Same" coordinate solutions, up to a scalar constant along each principal axis, which depends on the square root $\sqrt{\lambda_k} = \alpha_k$ of the principal inertia on each axis:

principal = standard × $\sqrt{\lambda_k}$ standard = principal / $\sqrt{\lambda_k}$

- 4. Asymmetric map: one set principal, other standard
- 5. Symmetric map: both sets principal