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Motivation: Trees

Breiman (2001, Statistical Science) distinguishes two cultures of
statistical modeling.

@ Data models: Stochastic models, typically parametric.

@ Algorithmic models: Flexible models, data-generating process

unknown.

Example: Recursive partitioning models dependent variable Y by
“learning” a partition w.r.t explanatory variables Z3, .. ., Z.

Key features:

@ Predictive power in nonlinear regression relationships.

@ Interpretability (enhanced by visualization), i.e., no “black box”

methods.

Overview

@ Motivation: Trees and leaves
@ Methodology

e Model estimation

o Tests for parameter instability
@ Segmentation

@ Pruning

@ Applications

e Costly journals
e Beautiful professors
e Choosey students

@ Software

Motivation: Leaves

Typically: Simple models for univariate Y, e.g., mean or proportion.

Examples: CART and C4.5 in statistical and machine learning,
respectively.

Idea: More complex models for multivariate Y, e.g., multivariate normal
model, regression models, etc.

Here: Synthesis of parametric data models and algorithmic tree
models.

Goal: Fitting local models by partitioning of the sample space.



Recursive partitioning

1.

Base algorithm:

@ Fit model for Y.
@ Assess association of Y and each Z.

© Split sample along the Zj- with strongest association: Choose
breakpoint with highest improvement of the model fit.

© Repeat steps 1-3 recursively in the sub-samples until some
stopping criterion is met.

Here: Segmentation (3) of parametric models (1) with additive objective
function using parameter instability tests (2) and associated statistical
significance (4).

Model estimation

Estimating function: f can also be defined in terms of
n ~
> w(Yi,0) =0,
i=1

where (Y, 0) = oV(Y,0)/00.

Idea: In many situations, a single global model M(Y, 6) that fits all

n observations cannot be found. But it might be possible to find a
partition w.r.t. the variables Z = (Zi, . . ., Z)) so that a well-fitting model
can be found locally in each cell of the partition.

Tool: Assess parameter instability w.r.t to partitioning variables
ZjGZj (j:1,...,/).

. Model estimation

Models: M(Y, 0) with (potentially) multivariate observations Y € Y
and k-dimensional parameter vector 6 € ©.

Parameter estimation: 0 by optimization of objective function W(Y, 0)
for n observations Y; (i =1,...,n):

~

n
# = argmin V(Y;,0).
o 2 V)

i=1
Special cases: Maximum likelihood (ML), weighted and ordinary least
squares (OLS and WLS), quasi-ML, and other M-estimators.

Central limit theorem: If there is a true parameter 6y and given certain
weak regularity conditions, 6 is asymptotically normal with mean 6 and
sandwich-type covariance.

2. Tests for parameter instability

Generalized M-fluctuation tests capture instabilities in g for an ordering
w.rt Z.

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to
an ordering o(Zj).

Lt
’é—‘/zn—”?Zw(Yg(Z,j),é) (0<t<1)
i=1

-~

Wj(t, 0)

Functional central limit theorem: Under parameter stability
Wi(-) —= WO(-), where WP is a k-dimensional Brownian bridge.



2. Tests for parameter instability

Test statistics: Scalar functional A(W;) that captures deviations from
zero.

Null distribution: Asymptotic distribution of A(W?).

Special cases: Class of test encompasses many well-known tests for
different classes of models. Certain functionals A are particularly
intuitive for numeric and categorical Z;, respectively.

Advantage: Model M(Y, 5) just has to be estimated once. Empirical
estimating functions ¥ (Y;, 5) just have to be re-ordered and aggregated
for each Z;.

2. Tests for parameter instability

Splitting categorical variables: Assess instability using x? statistics.

()

Feature: Invariant for re-ordering of the C categories and the
observations within each category.

2
n

c
)‘xz(Wj) = Zm

c=1

2

Interpretation: Captures instability for split-up into C categories.

Limiting distribution: x2 with k - (C — 1) degrees of freedom.

2. Tests for parameter instability

Splitting numeric variables: Assess instability using supLM statistics.

16

Interpretation: Maximization of single shift LM statistics for all
conceivable breakpoints in [i, 7].
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Limiting distribution: Supremum of a squared, k-dimensional
tied-down Bessel process.

3. Segmentation

Goal: Split model into b =1, ..., B segments along the partitioning
variable Z; associated with the highest parameter instability. Local
optimization of

DD (Y, 0b).

b i€l

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(n®~1), but can be replaced by
dynamic programming of order O(n?). Different methods (e.g.,
information criteria) can choose B adaptively.

Here: Binary partitioning.



4. Pruning

Pruning: Avoid overfitting.

Pre-pruning: Internal stopping criterion. Stop splitting when there is no
significant parameter instability.

Post-pruning: Grow large tree and prune splits that do not improve the

model fit (e.g., via cross-validation or information criteria).

Here: Pre-pruning based on Bonferroni-corrected p values of the
fluctuation tests.

Costly journals
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Costly journals

Task: Price elasticity of demand for economics journals.

Source: Bergstrom (2001, Journal of Economic Perspectives) “Free

Labor for Costly Journals?”, used in Stock & Watson (2007),
Introduction to Econometrics.

Model: Linear regression via OLS.

@ Demand: Number of US library subscriptions.
@ Price: Average price per citation.
@ Log-log-specification: Demand explained by price.

@ Further variables without obvious relationship: Age (in years)
number of characters per page, society (factor).

Costly journals

Recursive partitioning:

’

Regressors Partitioning variables
(Const.) log(Pr./Cit.) || Price Cit. Age Chars Society
1 4.766 —0.533 || 3.280 5.261 42.198 7.436 6.562
< 0.001 <0.001 || 0.660 0.988 <0.001 0.830 0.922
2 4.353 —0.605 || 0.650 3.726 5.613 1.751 3.342
< 0.001 <0.001 || 0.998 0.998 0.935 1.000 1.000
3 5.011 —0.403 || 0.608 6.839 5.987 2.782  3.370
< 0.001 <0.001 || 0.999 0.894 0.960 1.000 1.000

(Wald tests for regressors, parameter instability tests for partitioning

variables.)




Beautiful professors Beautiful professors

Task: Correlation of beauty and teaching evaluations for professors. All Men Women
s H h & Parker ( £ fEd (Constant) 4.216 4.101 4.027
ource: Hamermesh & Parker (2005, Economics of Education
’ B 2 . A
Review). “Beauty in the Classroom: Instructors’ Pulchritude and eauty 0.283 0.383 0.133
Putative Pedagogical Productivity.” Gender (=w) | —0.213
Minority | —0.327 | —0.014 —0.279
Model: Linear regression via WLS. Native speaker | —0.217 | —0.388 —0.288
@ Response: Average teaching evaluation per course (on scale 1-5). Tenure track | —0.132 | —0.053 —0.064
@ Explanatory variables: Standardized measure of beauty and Lower division | —0.050 0.004 —0.244
factors gender, minority, tenure, etc. R2 0.271 0.316

@ Weights: Number of students per course.
(Remark: Only courses with more than a single credit point.)

Beautiful professors Beautiful professors
Hamermesh & Parker: -
p < 0.001
@ Model with all factors (main effects).
male female
@ Improvement for separate models by gender.
@ No association with age (linear or quadratic). p=0014
<40 >40
Here: 7]
. . p =0.019
@ Model for evaluation explained by beauty.
@ Other variables as partitioning variables. yaul S
. . . . . . Node 3 (n = 113) Node 4 (n = 137) Node 6 (n = 69) Node 8 (n = 81) Node 9 (n = 36)
@ Adaptive incorporation of correlations and interactions. s ... . 5 » 5 : 5 ] -
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Beautiful professors

Recursive partitioning:

(Const.)  Beauty
3 3.997 0.129
4 4.086 0.503
6 4.014 0.122
8 3.775 —0.198
9 3.590 0.403

Model comparison:

Model R? | Parameters

full sample | 0.271 7

nested by gender | 0.316 12
recursively partitioned | 0.382 10+ 4

Choosy students

Task: Choice of university in student exchange programmes.

Source: Dittrich, Hatzinger, Katzenbeisser (1998, Journal of the Royal
Statistical Society C). “Modelling the Effect of Subject-Specific
Covariates in Paired Comparison Studies with an Application to
University Rankings.”

Model: Paired comparison via Bradley-Terry(-Luce).

@ Ranking of six european management schools: London (LSE),
Paris (HEC), Milano (Luigi Bocconi), St. Gallen (HSG), Barcelona
(ESADE), Stockholm (HHS).

@ Interviews with about 300 students from WU Wien.
@ Additional information: Gender, studies, foreign language skills.

Beautiful professors

Single credit courses:

@ Different type of courses: Yoga, aerobic, etc.
@ Associated with second strongest instability (after gender).
@ Sub-samples too small for separated models: 18 (m), 9 (f).
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Choosy students

Recursive partitioning:

London Paris Milano St. Gallen Barcelona Stockholm
3 0.22 0.13 0.16 0.07 0.41 0.01
4 0.42 0.09 0.35 0.05 0.06 0.03
7 0.33 0.42 0.06 0.07 0.10 0.04
8 0.39 0.23 0.09 0.14 0.09 0.06
9 0.39 0.10 0.08 0.16 0.17 0.10

(Standardized ranking from Bradley-Terry model.)

Software

Extension requirements:
@ S4 “StatModel” objects (modeltools package): Separate data
handling (in particular, formula processing) from model fitting.

@ Fitted models must provide methods: estfun(), weights (),
reweight () (at least for 0/1 weights), and extractor for objective
function (default: deviance()).

@ Further methods are re-used (if available): print (), predict (),
coef (), summary(), residuals(), logLik ().

Easy if: Model already available in R with

@ Fitted model class with all the usual extractor functions.
@ Access to empirical estimating functions (estfun () method).

@ In addition to formula interface (a la 1m () ): Fitting function (a la
1m.fit ()) that returns sufficiently post-processed output.

Software

Implementation: In R system for statistical computing.
@ Object-oriented implementation of model-based recursive
partitioning in function mob () from package party.
@ Underlying inference methods in package strucchange.

@ Convenient interfaces for linear regression (lm.fit ()),
generalized linear models (glm.fit ()), and survival regression
(survreg()) are readily available.

@ Currently: Hand-crafted code for Bradley-Terry model (interfacing
glm.fit ()), notin package.

Software

Caveats:

@ For visualization: Panel-generating function for grid graphics.

@ mob () interprets weights as case weights (and expects the
“StatModel” objects to do the same).

@ Non-standard formula processing for multivariate responses.
@ Hopefully: New model/formula interface soon on R-Forge.

Example: Simple implementation of basic Bradley-Terry model.

@ Interfaces: bt1() and btl.fit () plus methods.

@ Workhorse: Set up design matrix, call glm.fit () with
family = binomial (), suitably aggregate results.

@ Glue code: S4 “BTL” object with few additional methods.



Implementation of simple Bradley-Terry models Implementation of simple Bradley-Terry models

Artificial data: Interfaces: Formula interface and workhorse fitting function.
R> pc <- rbind( R> btl(pc ~ 1)
+ c(1, 1, 1), #a>b>c
. (1,1, 0), #a>c>b Bradley-Terry-Luce model
+ c(1, 0, 0), #c>a>b .. .
+ c(1, 1, 1) #a>b>c Coefficients:
+ ) a b
R.> colna.mes(pc) <- c("ab", "ac", "bC") 17542 —04158
Standardized latent ranking:
Question: Proper data structures for paired comparison data? a b ¢
0.7769 0.0887 0.1344
Ideally: pc should be treated like a vector of length 4 (# subjects) with R> pc_btl <- btl.fit(pc)
suitable meta-data that reflects # objects, labels, printing, etc. R> class(pc_btl)
[1] "btl"
Implementation of simple Bradley-Terry models Implementation of simple Bradley-Terry models
R> coef (pc_btl) R> btl.fit(y = pc, weights = c(1, 1, 1, 0))
a b Bradley-Terry-Luce model
1.7541765 -0.4158042
R> coef(pc_btl, log = FALSE) CoefficientsQ
a
a b c 1.145 -1.145
0.77686224 0.08870199 0.13443577
R> estfun(pc_btl) Standardized latent ranking:
a b c
a b 0.70450 0.07133 0.22417

[1,] 0.2500030 0.4999987
[2,] 0.2500030 -0.5000014
[3,] -0.7500083 -0.5000014
[4,] 0.2500030 0.4999987

R> deviance(pc_btl)

[1] 11.36700

R> logLik(pc_btl)

"log Lik.' -5.683498 (df=2)



Implementation of simple Bradley-Terry models

Interface: “StatModel” glue code.

R> class(BTL)

[1] "StatModel"
attr(,"package")
[1] "modeltools"

R> mf <- ModelEnvFormul

a(ab + ac + bc 7 1,

+ data = as.data.frame(pc))
R> pc_BTL <- fit(BTL, mf)

R> class(pc_BTL)
[1] "BTL" "btl"
R> pc_BTL

BTL coefficients:
a b
1.7542 -0.4158

Implementation of simple Bradley-Terry models

R> load("cems.rda")

R> cems <- cems[!apply(sapply(cems[,1:15], is.na), 1, all),]

R> cems_mob <- mob(ab + ac + ad + ae + af + bc + bd + be +
bf + cd + ce + cf + de + df + ef ~ 1 | study + english +
french + spanish + italian + work + gender + intdegree,

data = cems, model
control = mob_cont

+ 4+ + +

R> plot(cems_mob, termi
+ tnex = 2, tp_args
+ names = c("Lo", "P

R> coef (cems_mob)

a b
3 2.915557 2.37530103
4 2.657933 1.06913836
7 2.174962 2.42810393
8 1.794987 1.25646206
9 1.394938 0.03678015 -

= BTL, na.action = na.pass,
rol(minsplit = 5))

nal_panel = node_btlplot,
= list(yscale = c(0, 0.5),
all, IIMiII s IlSGll, IIBaII s |lStll)))

C d e
2.6132469 1.7116796 3.5496433
2.4611060 0.6068164 0.7413380
0.4400174 0.5704167 0.9507593
0.3024828 0.7576933 0.3729114
0.2427147 0.5071161 0.5702408

Implementation of simple Bradley-Terry models

R> pc_BTL2 <- reweight(pc_BTL, weights = c(1, 1, 1, 0))
R> weights(pc_BTL2)

[1] 1110
R> coef (pc_BTL2)

a b
1.145071 -1.145071

R> estfun(pc_BTL2)

a b
[1,] 0.3333340 0.6666672
[2,] 0.3333340 -0.3333340
[3,] -0.6666672 -0.3333340
[4,1] 0.0000000 0.0000000

Summary

Model-based recursive partitioning:
@ Synthesis of classical parametric data models and algorithmic tree
models.
@ Based on modern class of parameter instability tests.

@ Aims to minimize clearly defined objective function by greedy
forward search.

@ Can be applied general class of parametric models.

@ Alternative to traditional means of model specification, especially
for variables with unknown association.

@ Object-oriented implementation freely available: Extension for new
models requires some coding but is limited if interfaced model is
well designed.



