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Motivation
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Paths of Dow JC and DAX: 10/2009 - 10/2010

We observe a parallel development. Remarkably this pattern can be observed for
single years at least since 1998, though both are assumed to be geometric
random walks. They are non stationary, the log-series are I(1).

If a linear combination of I(1) series is stationary, i.e. I(0), the series are called
cointegrated.
If 2 processes xt and yt are both I(1) and

yt − αxt = εt

with εt trend-stationary or simply I(0), then xt and yt are called cointegrated.
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Cointegration in economics

This concept origins in macroeconomics where series often seen as I(1) are
regressed onto, like private consumption, C, and disposable income, Y d .
Despite I(1), Y d and C cannot diverge too much in either direction:

C > Y d or C � Y d

Or, according to the theory of competitive markets the profit rate of firms
(profits/invested capital) (both I(1)) should converge to the market average over
time. This means that profits should be proportional to the invested capital in the
long run.
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Common stochastic trend

The idea of cointegration is that there is a common stochastic trend, an I(1)
process Z , underlying two (or more) processes X and Y . E.g.

Xt = γ0 + γ1Zt + εt

Yt = δ0 + δ1Zt + ηt

εt and ηt are stationary, I(0), with mean 0. They may be serially correlated.

Though Xt and Yt are both I(1), there exists a linear combination of them which is
stationary:

δ1Xt − γ1Yt ∼ I(0)
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Models with I(1) variables
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Spurious regression

The spurious regression problem arises if arbitrarily
I trending or
I nonstationary

series are regressed on each other.

I In case of (e.g. deterministic) trending the spuriously found relationship is due
to the trend (growing over time) governing both series instead to economic
reasons.
t-statistic and R2 are implausibly large.

I In case of nonstationarity (of I(1) type) the series - even without drifts - tend to
show local trends, which tend to comove along for relative long periods.
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Spurious regression: independent I(1)’s

We simulate paths of 2 RWs without drift with independently generated standard
normal white noises, εt , ηt .

Xt = Xt−1 + εt , Yt = Yt−1 + ηt , t = 1,2,3, . . . ,T

Then we estimate by LS the model

Yt = α + βXt + ζt

In the population α = 0 and β = 0, since Xt and Yt are independent.
Replications for increasing sample sizes shows that

I the DW-statistics are close to 0. R2 is too large.
I ζt is I(1), nonstationary.
I the estimates are inconsistent.
I the tβ-statistic diverges with rate

√
T .
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Spurious regression: independence

As both X and Y are independent I(1)s, the relation can be checked consistently
using first differences.

∆Yt = β∆Xt + ξt

Here we find that
I β̂ has the usual distribution around zero,
I the tβ-values are t-distributed,
I the error ξt is WN.
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Bivariate cointegration

However, if we observe two I(1) processes X and Y , so that the linear combination

Yt = α + βXt + ζt

is stationary, i.e. ζt is stationary, then
I Xt and Yt are cointegrated.

When we estimate this model with LS,
I the estimator β̂ is not only consistent, but superconsistent. It converges with

the rate T ,
instead of

√
T .

I However, the tβ-statistic is asy normal only if ζt is not serially correlated.
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Bivariate cointegration: discussion

I The Johansen procedure (which allows for correction for serial correlation
easily) (see below) is to be preferred to single equation procedures.

I If the model is extended to 3 or more variables, more than one relation with
stationary errors may exist. Then when estimating only a multiple regression,
it is not clear what we get.
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Cointegration
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Definition: Cointegration

Definition: Given a set of I(1) variables {x1t , . . . , xkt}. If there exists a linear
combination consisting of all vars with a vector β so that

β1x1t + . . .+ βkxkt = β′xt . . . trend-stationary

βj 6= 0, j = 1, . . . , k . Then the x ’s are cointegrated of order CI(1,1).
I β′xt is a (trend-)stationary variable.
I The definition is symmetric in the vars. There is no interpretation of

endogenous or exogenous vars. A simultaneous relationship is described.

Definition: Trend-stationarity means that after subtracting a deterministic trend the process is I(0).
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Definition: Cointegration (cont)

I β is defined only up to a scale.
If β′xt is trend-stationary, then also c(β′xt ) with c 6= 0.
Moreover, any linear combination of cointegrating relationships (stationary
variables) is stationary.

I More generally we could consider x ∼ I(d) and β′x ∼ I(d − b) with b > 0.
Then the x ’s are CI(d ,b).

I We will deal only with the standard case of CI(1,1).
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An unstable VAR(1), an example
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An unstable VAR(1): xt = Φ1xt−1 + εt

We analyze in the following the properties of[
x1t

x2t

]
=

[
0.5 −1.
−.25 0.5

][
x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]

εt are weakly stationary and serially uncorrelated.

We know a VAR(1) is stable, if the eigenvalues of Φ1 are less 1 in modulus.
I The eigenvalues of Φ1 are λ1,2 = 0,1.
I The roots of the characteristic function |I −Φ1z| = 0 should be outside the

unit circle for stationarity.
Actually, the roots are z = (1/λ) with λ 6= 0. z = 1.

Φ1 has a root on the unit circle. So process xt is not stable.

Remark: Φ1 is singular; its rank is 1.
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Common trend

For all Φ1 there exists an invertible (i.g. full) matrix L so that

LΦ1L−1 = Λ

Λ is (for simplicity) diagonal containing the eigenvalues of Φ1.

We define new variables yt = Lxt and ηt = Lεt .
Left multiplication of the VAR(1) with L gives

Lxt = LΦ1xt−1 + Lεt

(Lxt ) = LΦ1L−1(Lxt−1) + (Lεt )

yt = Λyt−1 + ηt
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Common trend: x ’s are I(1)

In our case L and Λ are

L =

[
1.0 −2.0
0.5 1.0

]
, Λ =

[
1 0
0 0

]

Then [
y1t

y2t

]
=

[
1 0
0 0

][
y1,t−1

y2,t−1

]
+

[
η1t

η2t

]

I ηt = Lεt : η1t and η2t are linear combinations of stationary processes. So
they are stationary.

I So also y2t is stationary.
I y1t is obviously integrated of order 1, I(1).
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Common trend y1t , x ’s as function of y1t

yt = Lxt with L invertible, so we can express xt in yt .
Left multiplication by L−1 gives

L−1yt = L−1Λyt−1 + L−1ηt

xt = (L−1Λ)yt−1 + εt

L−1 = . . .

x1t = (1/2)y1,t−1 + ε1t

x2t = −(1/4)y1,t−1 + ε2t

I Both x1t and x2t are I(1), since y1t is I(1).
I y1t is called the common trend of x1t and x2t . It is the common nonstationary

component in both x1t and x2t .
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Cointegrating relation

Now we eliminate y1,t−1 in the system above by multiplying the 2nd equation by 2
and adding to the first.

x1t + 2x2t = (ε1,t + 2ε2,t )

This gives a stationary process, which is called the cointegrating relation. This is
the only linear combination (apart from a factor) of both nonstationary processes,
which is stationary.
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A cointegrated VAR(1), an example
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A cointegrated VAR(1)
We go back to the system and proceed directly.

xt = Φ1xt−1 + εt

and subtract xt−1 on both sides (cp. the Dickey-Fuller statistic).[
∆x1t

∆x2t

]
=

[
−.5 −1.
−.25 −.5

][
x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]
The coefficient matrix Π, Π = −(I −Φ1), in

∆xt = Πxt−1 + εt

has only rank 1. It is singular.
Then Π can be factorized as

Π = αβ′

(2× 2) = (2× 1)(1× 2)
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A cointegrated VAR(1)

k the number of endogenous variables, here k = 2.
m = Rank(Π) = 1, is the number of cointegrating relations.

A solution for Π = αβ′ is[
−.5 −1.
−.25 −.5

]
=

(
−.5
−.25

)(
1
2

)′
=

(
−.5
−.25

)(
1 2

)

Substituted in the model[
∆x1t

∆x2t

]
=

(
−.5
−.25

)(
1 2

)[ x1,t−1

x2,t−1

]
+

[
ε1t

ε2t

]
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A cointegrated VAR(1)

Multiplying out[
∆x1t

∆x2t

]
=

(
−.5
−.25

)(
x1,t−1 + 2x2,t−1

)
+

[
ε1t

ε2t

]

The component (x1,t−1 + 2x2,t−1) appears in both equations.
As the lhs variables and the errors are stationary, this linear combination is
stationary.
This component is our cointegrating relation from above.
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Vector error correction, VEC
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VECM, vector error correction model

Given a VAR(p) of I(1) x ’s (ignoring consts and determ trends)

xt = Φ1xt−1 + . . .+ Φpxt−p + εt

There always exists an error correction representation of the form (trick
xt = xt−1 + ∆xt )

∆xt = Πxt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

where Π and the Φ∗ are functions of the Φ’s. Specifically,

Φ∗j = −
p∑

i=j+1

Φi , j = 1, . . . ,p − 1

Π = −(I −Φ1 − . . .−Φp) = −Φ(1)

The characteristic polynomial is I −Φ1z − . . .−Φpzp = Φ(z).
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Interpretation of ∆xt = Πxt−1 +
∑p−1

i=1 Φ∗i ∆xt−i + εt

I If Π = 0, (all λ(Π) = 0) then there is no cointegration. Nonstationarity of I(1)
type vanishes by taking differences.

I If Π has full rank, k , then the x ’s cannot be I(1) but are stationary.
(Π−1∆xt = xt−1 + . . .+ Π−1εt )

I The interesting case is, Rank(Π) = m,0 < m < k , as this is the case of
cointegration. We write

Π = αβ′

(k × k) = (k ×m)[(k ×m)′]

where the columns of β contain the m cointegrating vectors, and the columns
of α the m adjustment vectors.

Rank(Π) = min[ Rank(α), Rank(β) ]
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Long term relationship in ∆xt = Πxt−1 +
∑p−1

i=1 Φ∗i ∆xt−i + εt

There is an adjustment to the ’equilibrium’ x∗ or long term relation described by
the cointegrating relation.

I Setting ∆x = 0 we obtain the long run relation, i.e.

Πx∗ = 0

This may be wirtten as
Πx∗ = α(β′x∗) = 0

In the case 0 < Rank(Π) = Rank(α) = m < k the number of equations of this
system of linear equations which are different from zero is m.

β′x∗ = 0m×1
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Long term relationship

I The long run relation does not hold perfectly in (t − 1). There will be some
deviation, an error,

β′xt−1 = ξt−1 6= 0

I The adjustment coefficients in α multiplied by the ’errors’ β′xt−1 induce
adjustment. They determine ∆x t , so that the x ’s move in the correct direction
in order to bring the system back to ’equilibrium’.
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Adjustment to deviations from the long run

I The long run relation is in the example above

x1,t−1 + 2x2,t−1 = ξt−1

ξt is the stationary error.
I The adjustment of x1,t in t to ξt−1, the deviation from the long run in (t − 1), is

∆x1,t = (−.5)ξt−1 and x1,t = ∆x1,t + x1,t−1

I If ξt−1 > 0, the error is positive, i.e. x1,t−1 is too large c.p., then ∆x1,t , the
change in x1, is negative. x1 decreases to guarantee convergence back to the
long run path.

I Similar for x2,t in the 2nd equation.
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Cointegrated VAR models, CIVAR
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Model

We consider a VAR(p) with xt I(1), (unit root) nonstationary.

xt = φ + Φ1xt−1 + . . .+ Φpxt−p + εt

Then

I ∆xt is I(0).
I Π = −Φ(1) is singular, i.e. |Φ(1)| = 0

(For weakly stationarity, I(0): |Φ(z)| = 0 only for |z| > 1.)

The VEC representation reads with Π = αβ′

∆xt = φ + Πxt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

Πxt−1 is called the error-correction term.

33 / 58



3 cases

We distinguish 3 cases for Rank(Π) = m:

I. m = 0 : Π = 0 (all λ(Π) = 0)

II. 0 < m < k : Π = αβ′, α(k×m), (β′)(m×k)

III. m = k : |Π| = | −Φ(1)| 6= 0!
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I. Rank(Π) = 0, m = 0 (all λ(Π) = 0):

In case of Rank(Π) = 0, i.e. m = 0, it follows
I Π = 0, the null matrix.
I There does not exist a linear combination of the I(1) vars, which is stationary.
I The x ’s are not cointegrated.
I The EC form reduces to a stationary VAR(p − 1) in differences.

∆xt = φ +

p−1∑
i=1

Φ∗i ∆xt−i + εt

I Π has m = 0 eigenvalues different from 0.
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II. Rank(Π) = m, 0 < m < k :

The rank of Π is m, m < k . We factorize Π in two rank m matrices α and β′.
Rank(α) = Rank(β) = m.
Both α and β are (k ×m).

Π = αβ′ 6= 0

The VEC form is then

∆xt = φ + αβ′ xt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

I The x ’s are integrated, I(1).
I There are m eigenvalues λ(Π) 6= 0.
I The x ’s are cointegrated. There are m linear combinations, which are

stationary.
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II. Rank(Π) = m, 0 < m < k :

I There are m linear independent cointegrating (column) vectors in β.
I The m stationary linear combinations are β′xt .
I xt has (k −m) unit roots, so (k −m) common stochastic trends.

There are
I k I(1) variables,
I m cointegrating relations (eigenvalues of Π different from 0), and
I (k −m) stochastic trends.

k = m + (k −m)
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III. Rank(Π) = m, m = k :

Full rank of Π implies
I that |Π| = | −Φ(1)| 6= 0.
I xt has no unit root. That is xt is I(0).
I There are (k −m) = 0 stochastic trends.
I As consequence we model the relationship of the x ’s in levels, not in

differences.
I There is no need to refer to the error correction representation.
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II. Rank(Π) = m, 0 < m < k : (cont) common trends

A general way to obtain the (k −m) common trends is to use the orthogonal
complement matrix α⊥ of α.

α′⊥α = 0

{k × (k −m)}′{k ×m} = {(k −m)×m}

If the ECM is left multiplied by α′⊥ the error correction term vanishes,

α′⊥Π = (α′⊥α)β′ = 0(k−m)×k

with α′⊥∆xt = ∆(α′⊥xt )

∆(α′⊥xt ) = (α′⊥φ) +

p−1∑
i=1

Φ∗i ∆(α′⊥xt−i) + (α′⊥εt )
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II. Rank(Π) = m, 0 < m < k : (cont) common trends

The resulting system is a (k −m) dimensional system of first differences,
corresponding to (k −m) independent RWs

α′⊥xt

which are the common trends.

Example (from above): α = (−1,−.5)′ then α⊥ = (1,−2)′.
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Non uniqueness of α,β in Π = αβ′

For any orthogonal matrix Ωm×m, ΩΩ′ = I ,

αβ′ = αΩΩ′ β′ = (αΩ)(βΩ)′ = α∗(β∗)′

where both α∗ and β∗ are of rank m.

Usually the structure
β′ = [Im×m, (β′1)m×(k−m)]

is imposed.
Each of the first m variables belong only to one equation and their coeffs are 1.

Economic interpretation is helpful when structuring β′. Also, a reordering of the
vars might be necessary.
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Inclusion of deterministic functions

There are several possibilities to specify the deterministic part, φ, in the model.

1 φ = 0: All components of xt are I(1) without drift. The stationary series
wt = β′xt has a zero mean.

2 φ = (φ0)k×1 = αk×m c0,m×1: This is the special case of a restricted constant.
The ECM is

∆xt = α(β′xt−1 + c0) + . . .

wt = β′xt has a mean of (−c0).
There is only a constant in the cointegrating relation, but the x ’s are I(1)
without a drift.

3 φ = φ0 6= 0: The x ’s are I(1) with drift. The coint rel may have a nonzero
mean. Intercept φ0 may be spilt in a drift component and a const vector in the
coint eq’s.
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Inclusion of deterministic functions

4 φ = φt = φ0 + (αc1)t :
Analogous, φ0 enters the drift of the x ’s. c1 becomes the trend in the coint rel.

∆xt = φ0 + α(β′xt−1 + c1t) + . . .

5 φ = φt = φ0 + φ1t :
Both constant and slope of the trend are unrestricted. The trending behavior
in the x ’s is determined both by a drift and a quadratic trend.
The coint rel may have a linear trend.

Case 3, φ = φ0, is relevant for asset prices.

Remark: The assignment of the const to either intercept or coint rel is not unique.
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ML estimation: Johansen (1)

Estimation is a 3-step procedure:
I 1st step: We start with the VEC representation and extract the effects of the

lagged ∆xt−j from the lhs ∆xt and from the rhs xt−1. (Cp. Frisch-Waugh).
This gives the residuals ût for ∆xt and v̂t for xt−1, and the model

ût = Πv̂t + εt

I 2nd step: All variables in the cointegration relation are dealt with
symmetrically. There are no endogenous and no exogeneous variables. We
view this system as

(α̃)−1ut = β̃′vt

where α̃ and β̃ are (k × k). The solution is obtained by canonical correlation.
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Johansen (2): canonical correlation

I We determine vectors α̌j , β̌j so that the linear combinations

α̌′jut and β̌′j vt

correlate
I maximal for j = 1,
I maximal subjcet to orthogonality wrt the solution for j = 1 (→ j = 2),
I etc.

For the largest correlation we get a largest eigenvalue, λ1, for the second largest a
smaller one, λ2 < λ1, etc. The eigenvalues are the squared (canonical) correlation
coefficients.
The columns of β are the associated normalized eigenvectors.

The λ’s are not the eigenvalues of Π, but have the same zero/nonzero properties.
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Johansen (2)

Actually we solve a generalized eigenvalue problem

|λS11 − S10S−1
00 S01| = 0

with the sample covariance matrices

S00 =
1

T − p

∑
ût û′t , S01 =

1
T − p

∑
ût v̂ ′t

S11 =
1

T − p

∑
v̂t v̂ ′t

The number of eigenvalues λ larger 0 determines the rank of β, resp. Π, and so
the number of cointegrating relations:

λ1 > . . . > λm > 0 = . . . = 0 = λk
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Johansen (3)

3rd step: In this final step the adjustment parameters α and the Φ∗’s are
estimated.

∆xt = φ + αβ′xt−1 +

p−1∑
i=1

Φ∗i ∆xt−i + εt

The maximized likelihood function based on m cointegrating vectors is

L−2/T
max ∝ |S00|

m∏
i=1

(1− λ̂i)

Under Gaussian innovations and the model is true, the estimates of the Φ∗j
matrices are asy normal and asy efficient.

Remark: S00 depends only on ∆xt and ∆xt−j , j = 1, . . . , p.
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Test for cointegration: trace test

Given the specification of the deterministic term we test for the rank m of Π. There
are 2 sequential tests

the trace test, and

the maximum eigenvalue test.

I trace test:

H0 : Rank(Π) = m against HA : Rank(Π) > m

The likelihood ratio statistic is

LKtr (m) = −(T − p)
k∑

i=m+1

ln(1− λ̂i)

We start with m = 0 – that is Rank(Π) = 0, there is no cointegration – against
m ≥ 1, that there is at least one coint rel. Etc.
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Test for cointegration: trace test

LKtr (m) takes large values (i.e. H0 is rejected) when the ’sum’ of the remaining
eigenvalues λm+1 ≥ λm+2 ≥ . . . ≥ λk is large.

If λ is
I large (say ≈ 1), then − ln(1− λ̂i) is large.
I small (say ≈ 0), then − ln(1− λ̂i) ≈ 0.
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Test for cointegration: max eigenvalue statistic

I maximum eigenvalue test:

H0 : Rank(Π) = m against HA : Rank(Π) = m + 1

The statistic is
LKmax (m) = −(T − p) ln(1− λ̂m+1)

We start with m = 0 – that is Rank(Π) = 0, there is no cointegration – against
m = 1, that there is one coint rel. Etc.

In case we reject m = k − 1 coint rel, we should have to conclude that there are
m = k coint rel. But this would not fit to the assumption of I(1) vars.

The critical values of both test statistics are nonstandard and are obtained via
Monte Carlo simulation.
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Forecasting, summary

The fitted ECM can be used for forecasting ∆xt+τ . The forecasts of xt+τ (τ -step
ahead) are obtained recursively.

x̂t+τ = ∆̂x t+τ + x̂t+τ−1

A summary:
I If all vars are stationary / the VAR is stable, the adequate model is a VAR in

levels.
I If the vars are integrated of order 1 but not cointegrated, the adequate model

is a VAR in first differences (no level components included).
I If the vars are integrated and cointegrated, the adequate model is a

cointegrated VAR. It is estimated in the first differences with the cointegrating
relations (the levels) as explanatory vars.
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Bivariate cointegration
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Estimation and testing: Engle and Granger

I Engle-Granger: xt , yt ∼ I(1)

yt = α + x ′tβ + ut

MacKinnon has tabulated critical values for the test of the LS residuals ût

under the null of no cointegration (of a unit root), similar to the augmented
Dickey-Fuller test.

H0 : ut ∼ I(1), no coint HA : ut ∼ I(0), coint

The test distribution depends on the inclusion of an intercept or a trend.
Additional lagged differences may be used.

If u is stationary, x ’s and y are cointegrated.
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Phillips-Ouliaris test

I Phillips-Ouliaris: Two residuals are compared.
ût from the Engle-Granger test and ξ̂t from

zt = Πzt−1 + ξt

estimated via LS, where zt = (yt ,x ′t )
′.

ξ̂1,t is stationary, ût only if the vars are cointegrated.
Intuitively the ratio (s2

ξ1
/s2

u) is small under no coint and large under coint (due
to the superconsistency associated with s2

u).

H0 : no coint HA : coint

Two test statisticis P̂u and P̂z are available in ca.po {urca}.

Remark: If zt is a RW, then zt = 1zt−1 + ξt and ξt stationary.
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Exercises and references
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Exercises

Choose 2 of (1G, 2) and 1 out of (3G, 4G).

1G Use Ex4_SpurReg_R.txt to generate and comment the small sample
distribution of the t-statistic and R2 for
(a) the spurious regression problem,
(b) for the model in ∆Xt and ∆Yt .

2 Given a VAR(2) in standard form. Derive the VEC representation. Show the
equivalence of both representations. Use xt = xt−1 + ∆xt .

3G Investigate the cointegration properties of stock indices.
(a) For 2 stock exchanges,
(b) for 3 or more stock exchanges.
Use Ex4_R.txt.
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Exercises

4G Investigate the price series of black and white pepper, PepperPrices from
the R library(”AER”) wrt cointegration and give the VECM.
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